Welcome to LookChem.com Sign In|Join Free

CAS

  • or

102390-86-3

Post Buying Request

102390-86-3 Suppliers

Recommended suppliersmore

  • Product
  • FOB Price
  • Min.Order
  • Supply Ability
  • Supplier
  • Contact Supplier

102390-86-3 Usage

Check Digit Verification of cas no

The CAS Registry Mumber 102390-86-3 includes 9 digits separated into 3 groups by hyphens. The first part of the number,starting from the left, has 6 digits, 1,0,2,3,9 and 0 respectively; the second part has 2 digits, 8 and 6 respectively.
Calculate Digit Verification of CAS Registry Number 102390-86:
(8*1)+(7*0)+(6*2)+(5*3)+(4*9)+(3*0)+(2*8)+(1*6)=93
93 % 10 = 3
So 102390-86-3 is a valid CAS Registry Number.

102390-86-3SDS

SAFETY DATA SHEETS

According to Globally Harmonized System of Classification and Labelling of Chemicals (GHS) - Sixth revised edition

Version: 1.0

Creation Date: Aug 17, 2017

Revision Date: Aug 17, 2017

1.Identification

1.1 GHS Product identifier

Product name 5-[(formyloxy)methyl]furfural

1.2 Other means of identification

Product number -
Other names FMF

1.3 Recommended use of the chemical and restrictions on use

Identified uses For industry use only.
Uses advised against no data available

1.4 Supplier's details

1.5 Emergency phone number

Emergency phone number -
Service hours Monday to Friday, 9am-5pm (Standard time zone: UTC/GMT +8 hours).

More Details:102390-86-3 SDS

102390-86-3Relevant articles and documents

Evolution Process and Controlled Synthesis of Humins with 5-Hydroxymethylfurfural (HMF) as Model Molecule

Shen, Haiyan,Shan, Haozhe,Liu, Li

, p. 513 - 519 (2020)

Elucidation of the chemical structure and formation mechanism of humins is a requisite to further improve the efficiency of acid-catalyzed biomass conversion. Through a low-temperature approach, the key intermediates resulting in the formation of 5-hydroxymethylfurfural (HMF)-derived humins were captured, revealing multiple elementary reactions such as etherification, esterification, aldol condensation, and acetalization. Through humin characterization, it was found out that the aldol condensation moiety between aldehyde group and levulinic acid is critical to justify the characteristic IR peaks (1620 and 1710 cm?1) and aromatic fragments from pyrolysis GC–MS. Based on the investigations by means of HPLC–MS/MS, IR, pyrolysis GC–MS, and SEM, the structural models of humins at different temperatures were proposed, which are comprised of the elementary reaction types confirmed by the key intermediates. Humin structures with varying content of aldol condensation could be controllably synthesized under different reaction conditions (temperature and time), demonstrating the evolution process of HMF-derived humins.

Production of 5-(formyloxymethyl)furfural from biomass-derived sugars using mixed acid catalysts and upgrading into value-added chemicals

Dutta, Saikat

, (2020)

In this work, 5-(formyloxymethyl)furfural (FMF) has been produced from biomass-derived hexose sugars within a biphasic reaction mixture consisting of aqueous formic acid (85%), a strong Br?nsted acid catalyst, and 1,2-dichloroethane as an organic extractant. Using a combination of aqueous hydrobromic acid and formic acid, under optimized condition (80 °C, 8 h, 10 wt% substrate loading), 68% isolated yield of FMF was obtained from fructose. FMF has been demonstrated as a renewable chemical building block for the synthesis of renewable chemicals of commercial significance such as 5-methylfurfural, 2,5-diformylfuran, and 2,5-furandicarboxylic acid in good to excellent isolated yields.

Toward an Integrated Conversion of 5-Hydroxymethylfurfural and Ethylene for the Production of Renewable p-Xylene

Tao, Lei,Yan, Tian-Hao,Li, Wenqin,Zhao, Yi,Zhang, Qi,Liu, Yong-Mei,Wright, Mark M.,Li, Zhen-Hua,He, He-Yong,Cao, Yong

supporting information, p. 2212 - 2227 (2018/10/02)

The use of biomass as a solution to satisfy the pressing needs for a fully sustainable biocommodity industry has been explored for a long time. However, limited success has been obtained. In this study, a highly effective two-stage procedure for the direct preparation of para-xylene (PX) from 5-hydroxymethylfurfural (HMF) and formic acid in one pot is described; these chemicals are two of the major bio-based feedstocks that offer the potential to address urgent needs for the green, sustainable production of drop-in chemical entities. The use of a robust, efficient heterogeneous catalyst, namely, bimetallic Pd-decorated Au clusters anchored on tetragonal-phase zirconia, is crucial to the success of this strategy. This multifunctional catalytic system can not only facilitate a low-energy-barrier H2-free pathway for the rapid, nearly exclusive formation of 2,5-dimethylfuran (DMF) from HMF but also enable the subsequent ultraselective production of PX by the dehydrative aromatization of the resultant DMF with ethylene. With increasing pressure around the world to move toward a bio-based economy, it is essential that industrially important commodity chemicals can be readily accessed from biomass resources. Para-xylene (PX) synthesis is one such target that is being actively pursued through the development of several biorefinery schemes based on integrated biomass processing. Significant progress has recently been achieved either in the selective synthesis of biorenewable PX from Diels-Alder-like coupling of ethylene with 2,5-dimethylfuran (DMF) or making DMF from 5-hydroxymethylfurfural (HMF) using hydrogen as the terminal reductant. However, a green and direct conversion of HMF, an essential feedstock source for future biorefinery schemes, into PX has yet to be developed. We have established an integrated process that directly converts HMF to PX in a highly compact and hydrogen-independent manner, thereby providing a new perspective on the potential of advanced biorefinery technologies. Cao and colleagues describe an alternative strategy for producing para-xylene through a more sustainable method than the current bio-based approaches. The strategy relies on an integrated conversion of 5-hydroxymethylfurfural with formic acid and ethylene, made possible by the use of a single multifunctional catalyst based on bimetallic Pd-decorated Au deposited on tetragonal-phase zirconia. The proposed process is particularly appealing because it is fully fossil independent, implying a viable and greener biorefinery scheme.

Post a RFQ

Enter 15 to 2000 letters.Word count: 0 letters

Attach files(File Format: Jpeg, Jpg, Gif, Png, PDF, PPT, Zip, Rar,Word or Excel Maximum File Size: 3MB)

1

What can I do for you?
Get Best Price

Get Best Price for 102390-86-3