1138471-54-1Relevant articles and documents
Design, synthesis and study of antibacterial and antitubercular activity of quinoline hydrazone hybrids
Eswaran, Sumesh,Shruthi, T. G.,Subramanian, Sangeetha
, p. 137 - 147 (2020)
Emerging bacterial resistance is causing widespread problems for the treatment of various infections. Therefore, the search for antimicrobials is a never-ending task. Hydrazones and quinolines possess a wide variety of biological activities. Herewith, eleven quinoline hydrazone derivatives have been designed, synthesized, characterized and evaluated for their antibacterial activity and antitubercular potential against Mtb WT H37Rv. Compounds QH-02, QH-04 and QH-05 were found to be promising compounds with an MIC value of 4 μg/mL against Mtb WT H37Rv. Compounds QH-02, QH-04, QH-05, and QH-11 were also found to be active against bacterial strains including Acinetobacter baumanii, Escherichia coli and Staphylococcus aureus. Further, we have carried out experiments to confirm the cytotoxicity of the active compounds and found them to be non-toxic.
Design, synthesis and biological evaluation of new quinoline derivatives as potential antitumor agents
Su, Tong,Zhu, Jiongchang,Sun, Rongqin,Zhang, Huihui,Huang, Qiuhua,Zhang, Xiaodong,Du, Runlei,Qiu, Liqin,Cao, Rihui
, p. 154 - 167 (2019)
A series of new quinoline derivatives was designed, synthesized and evaluated for their antiproliferative activity. The results demonstrated that compounds 11p, 11s, 11v, 11x and 11y exhibited potent antiproliferative activity with IC50 value of lower than 10 μM against seven human tumor cell lines, and N-(3-methoxyphenyl)-7- (3-phenylpropoxy)quinolin-4-amine 11x was found to be the most potent antiproliferative agent against HCT-116, RKO, A2780 and Hela cell lines with an IC50 value of 2.56, 3.67, 3.46 and 2.71 μM, respectively. The antitumor efficacy of the representative compound 11x in mice was also evaluated, and the results showed that compound 11x effectively inhibited tumor growth and decreased tumor weight in animal models. Further investigation on mechanism of action indicated that compound 11x could inhibit colorectal cancer growth through ATG5-depenent autophagy pathway. Therefore, these quinoline derivatives are a new class of molecules that have the potential to be developed as new antitumor drugs.
Highly chemoselective deoxygenation of N-heterocyclic: N -oxides under transition metal-free conditions
Kim, Se Hyun,An, Ju Hyeon,Lee, Jun Hee
, p. 3735 - 3742 (2021)
Because their site-selective C-H functionalizations are now considered one of the most useful tools for synthesizing various N-heterocyclic compounds, the highly chemoselective deoxygenation of densely functionalized N-heterocyclic N-oxides has received much attention from the synthetic chemistry community. Here, we provide a protocol for the highly chemoselective deoxygenation of various functionalized N-oxides under visible light-mediated photoredox conditions with Na2-eosin Y as an organophotocatalyst. Mechanistic studies imply that the excited state of the organophotocatalyst is reductively quenched by Hantzsch esters. This operationally simple technique tolerates a wide range of functional groups and allows high-yield, multigram-scale deoxygenation. This journal is
Design, synthesis and biological evaluation of 4-aminoquinoline-guanylthiourea derivatives as antimalarial agents
Bhagat, Shweta,Arfeen, Minhajul,Das, Gourav,Ramkumar, Mridula,Khan, Shabana I.,Tekwani, Babu L.,Bharatam, Prasad V.
, (2019)
Guanylthiourea (GTU) has been identified as an important antifolate antimalarial pharmacophore unit, whereas, 4-amino quinolones are already known for antimalarial activity. In the present work molecules carrying 4-aminoquinoline and GTU moiety have been designed using molecular docking analysis with PfDHFR enzyme and heme unit. The docking results indicated that the necessary interactions (Asp54 and Ile14) and docking score (?9.63 to ?7.36 kcal/mmol) were comparable to WR99210 (?9.89 kcal/mol). From these results nine molecules were selected for synthesis. In vitro analysis of these synthesized compounds reveal that out of the nine molecules, eight show antimalarial activity in the range of 0.61–7.55 μM for PfD6 strain and 0.43–8.04 μM for PfW2 strain. Further, molecular dynamics simulations were performed on the most active molecule to establish comparative binding interactions of these compounds and reference ligand with Plasmodium falciparum dihydrofolate reductase (PfDHFR).
Synthesis, antituberculosis studies and biological evaluation of new quinoline derivatives carrying 1,2,4-oxadiazole moiety
Shruthi,Eswaran, Sumesh,Shivarudraiah, Prasad,Narayanan, Shridhar,Subramanian, Sangeetha
, p. 97 - 102 (2019)
Tuberculosis is the infectious disease caused by mycobacterium tuberculosis (Mtb), responsible for the utmost number of deaths annually across the world. Herein, twenty-one new substituted 1,2,4-oxadiazol-3-ylmethyl-piperazin-1-yl-quinoline derivatives were designed and synthesized through multistep synthesis followed by in vitro evaluation of their antitubercular potential against Mtb WT H37Rv. The compound QD-18 was found to be promising with MIC value of 0.5 μg/ml and QD-19 to QD-21 were also remarkable with MIC value of 0.25 μg/ml. Additionally, we have carried out experiments to confirm the metabolic stability, cytotoxicity and pharmacokinetics of these compounds along with kill kinetics of QD-18. These compounds were found to be orally bioavailable and highly effective. Altogether, these results indicate that QD-18, QD-19, QD-20 and QD-21 are promising lead compounds for the development of a novel chemical class of antitubercular drugs.
Phosphonium chloride as a non-volatile chlorinating reagent: Preparation and reaction in no solvent or ionic liquid
Sugimoto, Osamu,Harada, Yukihiro,Tanji, Ken-Ichi
, p. 1583 - 1590 (2012)
Reaction of triphenylphosphine with trichloroisocyanuric acid in no solvent or an ionic liquid gave the corresponding phosphonium chloride, which can be used as a cheap and safe chlorinating reagent. Conversion of hydroxyheterocycles to chloroheterocycles, carboxylic acids to carboxylic acid chlorides, and primary amides to nitriles were accomplished by using the phosphonium chloride in excellent to good yields.
Metal-Free Deoxygenation of Amine N-Oxides: Synthetic and Mechanistic Studies
Lecroq, William,Schleinitz, Jules,Billoue, Mallaury,Perfetto, Anna,Gaumont, Annie-Claude,Lalevée, Jacques,Ciofini, Ilaria,Grimaud, Laurence,Lakhdar, Sami
, p. 1237 - 1242 (2021/06/01)
We report herein an unprecedented combination of light and P(III)/P(V) redox cycling for the efficient deoxygenation of aromatic amine N-oxides. Moreover, we discovered that a large variety of aliphatic amine N-oxides can easily be deoxygenated by using only phenylsilane. These practically simple approaches proceed well under metal-free conditions, tolerate many functionalities and are highly chemoselective. Combined experimental and computational studies enabled a deep understanding of factors controlling the reactivity of both aromatic and aliphatic amine N-oxides.
Highly Chemoselective Deoxygenation of N-Heterocyclic N-Oxides Using Hantzsch Esters as Mild Reducing Agents
An, Ju Hyeon,Kim, Kyu Dong,Lee, Jun Hee
supporting information, p. 2876 - 2894 (2021/02/01)
Herein, we disclose a highly chemoselective room-temperature deoxygenation method applicable to various functionalized N-heterocyclic N-oxides via visible light-mediated metallaphotoredox catalysis using Hantzsch esters as the sole stoichiometric reductant. Despite the feasibility of catalyst-free conditions, most of these deoxygenations can be completed within a few minutes using only a tiny amount of a catalyst. This technology also allows for multigram-scale reactions even with an extremely low catalyst loading of 0.01 mol %. The scope of this scalable and operationally convenient protocol encompasses a wide range of functional groups, such as amides, carbamates, esters, ketones, nitrile groups, nitro groups, and halogens, which provide access to the corresponding deoxygenated N-heterocycles in good to excellent yields (an average of an 86.8% yield for a total of 45 examples).
Synthesis method of 4,7-dichloroquinoline
-
Paragraph 0020; 0027-0028; 0029; 0036-0036; 0038; 0045-0046, (2020/07/15)
The invention discloses a synthesis method of 4,7-dichloroquinoline. The synthesis method is characterized by comprising the following steps: synthesizing 7-chloro-4-hydroxylquinoline-3-carboxylic acid by using a one-pot method, and carrying out decarboxylation and chlorination on the 7-chloro-4-hydroxylquinoline-3-carboxylic acid to obtain 4,7-dichloroquinoline. The step of synthesizing the 7-chloro-4-hydroxylquinoline-3-carboxylic acid by the one-pot method comprises the following sub-steps: with m-chloroaniline, triethyl orthoformate or trimethyl orthoformate and diethyl malonate as raw materials, carrying out condensation under the catalysis of anhydrous ferric trichloride to obtain diethyl 2-[[(3-chlorophenyl)amino]methylene]malonate, directly adding a condensation reaction solution into an organic solvent, carrying out heating cyclization to obtain 7-chloro-4-hydroxylquinoline-3-carboxylic acid ethyl ester, and after the cyclization reaction is completed, adding sodium hydroxidefor hydrolysis to obtain 7-chloro-4-hydroxylquinoline-3-carboxylic acid. Although the whole process comprises five reactions, intermediate products are good enough in purity and can be directly synthesized into a target product without purification, so operation is easy and convenient and industrialization is facilitated; and raw materials are easily available, and pollution is small.
Preparation method 4-7 -dichloroquinoline (by machine translation)
-
Paragraph 0035-0040, (2020/10/20)
The method comprises the steps of: adding 4 chloroaniline and ethoxymethyl diethyl malonate as raw materials, carrying out decarboxylation reaction, carrying out decarboxylation through condensation, cyclization and hydrolysis, carrying out decarboxylation reaction, adding sulfuric acid to 7 - under 3 - pressure, 4 and washing to obtain solid 7 - hydroxyl 3 - chloroquinolines. 230 - 260 °C. The method comprises the following steps: carrying out decarboxylation reaction, adding sulfuric acid to reaction completely, layering, organic layer recovery and water layer reaction till 90 - 100 °C 6.0 - 6.5 kg reaction until reaction is complete 90 - 100 °C, layering, organic layer recovery and water layer reaction; and the steps and chlorination are carried out 150 -170 °C pH4 - 5 4 -7 . Reaction conditions are mild, yield is high, and quality is good. (by machine translation)