13129-23-2Relevant articles and documents
Carboxyl Methyltransferase Catalysed Formation of Mono- and Dimethyl Esters under Aqueous Conditions: Application in Cascade Biocatalysis
Ashbrook, Chloe,Carnell, Andrew J.,Goulding, Ellie,Hatton, Harry,Johnson, James R.,Kershaw, Neil M.,McCue, Hannah V.,Rigden, Daniel J.,Ward, Lucy C.
supporting information, (2022/02/21)
Carboxyl methyltransferase (CMT) enzymes catalyse the biomethylation of carboxylic acids under aqueous conditions and have potential for use in synthetic enzyme cascades. Herein we report that the enzyme FtpM from Aspergillus fumigatus can methylate a broad range of aromatic mono- and dicarboxylic acids in good to excellent conversions. The enzyme shows high regioselectivity on its natural substrate fumaryl-l-tyrosine, trans, trans-muconic acid and a number of the dicarboxylic acids tested. Dicarboxylic acids are generally better substrates than monocarboxylic acids, although some substituents are able to compensate for the absence of a second acid group. For dicarboxylic acids, the second methylation shows strong pH dependency with an optimum at pH 5.5–6. Potential for application in industrial biotechnology was demonstrated in a cascade for the production of a bioplastics precursor (FDME) from bioderived 5-hydroxymethylfurfural (HMF).
GPR52 Antagonist Reduces Huntingtin Levels and Ameliorates Huntington's Disease-Related Phenotypes
Wang, Congcong,Zhang, Yu-Fang,Guo, Shimeng,Zhao, Quan,Zeng, Yanping,Xie, Zhicheng,Xie, Xin,Lu, Boxun,Hu, Youhong
, p. 941 - 957 (2020/11/30)
GPR52 is an orphan G protein-coupled receptor (GPCR) that has been recently implicated as a potential drug target of Huntington's disease (HD), an incurable monogenic neurodegenerative disorder. In this research, we found that striatal knockdown of GPR52 reduces mHTT levels in adult HdhQ140 mice, validating GPR52 as an HD target. In addition, we discovered a highly potent and specific GPR52 antagonist Comp-43 with an IC50 value of 0.63 μM by a structure-activity relationship (SAR) study. Further studies showed that Comp-43 reduces mHTT levels by targeting GPR52 and promotes survival of mouse primary striatal neurons. Moreover, in vivo study showed that Comp-43 not only reduces mHTT levels but also rescues HD-related phenotypes in HdhQ140 mice. Taken together, our study confirms that inhibition of GPR52 is a promising strategy for HD therapy, and the GPR52 antagonist Comp-43 might serve as a lead compound for further investigation.
Ruthenium-Catalyzed Three-Component Alkylation: A Tandem Approach to the Synthesis of Nonsymmetric N,N-Dialkyl Acyl Hydrazides with Alcohols
Bettoni, Léo,Joly, Nicolas,Lohier, Jean-Fran?ois,Gaillard, Sylvain,Poater, Albert,Renaud, Jean-Luc
supporting information, p. 4009 - 4017 (2021/07/02)
The borrowing hydrogen strategy has been applied in the synthesis of nonsymmetric N,N-dialkylated acyl hydrazides via a tandem three-component reaction catalyzed by a phosphine free diaminocyclopentadienone ruthenium tricarbonyl complex. This strategy represents the first direct one-pot approach to nonsymmetric functionalized acyl hydrazides. Different aromatic acyl hydrazides underwent dialkylation with a variety of primary or secondary alcohols and methanol or ethanol as alkylating agents in mild reaction conditions and good yields. Deuterium labelling experiments suggested that the primary or secondary alcohol was the hydrogen source in this tandem process. DFT calculations show that the combination of the tandem mixed product cannot be perfectly explained neither structurally nor electronically, but might be dependent of the physical state of the aldehyde or ketone intermediate (gaz vs. liquid) at the reaction temperature. (Figure presented.).
Tridentate Nickel(II)-Catalyzed Chemodivergent C-H Functionalization and Cyclopropanation: Regioselective and Diastereoselective Access to Substituted Aromatic Heterocycles
Nag, Ekta,Gorantla, Sai Manoj N. V. T.,Arumugam, Selvakumar,Kulkarni, Aditya,Mondal, Kartik Chandra,Roy, Sudipta
supporting information, p. 6313 - 6318 (2020/09/02)
A Schiff-base nickel(II)-phosphene-catalyzed chemodivergent C-H functionalization and cyclopropanation of aromatic heterocycles is reported in moderate to excellent yields and very good regioselectivity and diastereoselectivity. The weak, noncovalent interaction between the phosphene ligand and Ni center facilitates the ligand dissociation, generating the electronically and coordinatively unsaturated active catalyst. The proposed mechanisms for the reported reactions are in good accord with the experimental results and theoretical calculations, providing a suitable model of stereocontrol for the cyclopropanation reaction.
Photostable Helical Polyfurans
Varni, Anthony J.,Fortney, Andria,Baker, Matthew A.,Worch, Joshua C.,Qiu, Yunyan,Yaron, David,Bernhard, Stefan,Noonan, Kevin J. T.,Kowalewski, Tomasz
supporting information, p. 8858 - 8867 (2019/06/07)
This report describes the design and synthesis of a new class of polyfurans bearing ester side chains. The macromolecules can be synthesized using catalyst-transfer polycondensation, providing precise control over molecular weight and molecular weight distribution. Such obtained furan ester polymers are significantly more photostable than their alkyl analogues owing to the electron-withdrawing nature of the attached subunit. Most interestingly, they spontaneously fold into a compact π-stacked helix, yielding a complex multilayer cylindrical nanoparticle with a hollow, rigid, conjugated core composed of the polyfuran backbone and a soft, insulating outer layer formed by the ester side chains. The length of polymer side chains dictates the outer diameter of such nanoparticles, which for the hexyl ester groups used in the present study is equal to ~2.3 nm. The inner cavity of the conjugated core is lined with oxygen atoms, which set its effective diameter to 0.4 nm. Furthermore, installation of bulkier, branched chiral ester side chains on the repeat unit yields structures that, upon change of solvent, can reversibly transition between an ordered chiral helical folded and disordered unfolded state.
Selective oxidation of alcohols to esters using heterogeneous Co 3O4-N@C catalysts under mild conditions
Jagadeesh, Rajenahally V.,Junge, Henrik,Pohl, Marga-Martina,Radnik, Joerg,Brueckner, Angelika,Beller, Matthias
supporting information, p. 10776 - 10782 (2013/08/23)
Novel cobalt-based heterogeneous catalysts have been developed for the direct oxidative esterification of alcohols using molecular oxygen as benign oxidant. Pyrolysis of nitrogen-ligated cobalt(II) acetate supported on commercial carbon transforms typical homogeneous complexes to highly active and selective heterogeneous Co3O4-N@C materials. By applying these catalysts in the presence of oxygen, the cross and self-esterification of alcohols to esters proceeds in good to excellent yields.
The scent of bacteria: Headspace analysis for the discovery of natural products
Citron, Christian A.,Rabe, Patrick,Dickschat, Jeroen S.
supporting information, p. 1765 - 1776 (2013/01/15)
Volatile compounds released by 50 bacterial strains, 45 of them actinobacteria in addition to three chloroflexi and two myxobacteria, have been collected by use of a closed-loop stripping apparatus, and the obtained headspace extracts have been analyzed by GC-MS. Excluding terpenes that have recently been published elsewhere, 254 compounds from all kinds of compound classes have been identified. For unambiguous compound identification several reference compounds have been synthesized. Among the detected volatiles 12 new natural products have been found, in addition to mellein, which was released by Saccharopolyspora erythraea. The iterative PKS for this compound has recently been identified by in vitro experiments, but mellein production in S. erythraea has never been reported before. These examples demonstrate that headspace analysis is an important tool for the discovery of natural products that may be overlooked using conventional techniques. The method is also useful for feeding experiments with isotopically labeled precursors and was applied to investigate the biosynthesis of the unusual nitrogen compound 1-nitro-2-methylpropane, which arises from valine. Furthermore, several streptomycetes emitted compounds that were previously recognized as insect pheromones, thus questioning if bacterial symbionts are involved in insect communication.
A general and efficient zinc-catalyzed oxidation of benzyl alcohols to aldehydes and esters
Wu, Xiao-Feng
experimental part, p. 8912 - 8915 (2012/09/22)
Go green: A general and efficient zinc-catalyzed oxidation of benzyl alcohols has been developed. In the presence of a zinc catalyst, various aldehydes and esters have been prepared in good to excellent yields under mild conditions (see scheme).
Enantioselective synthesis of (-)-paeonilide
Harrar, Klaus,Reiser, Oliver
supporting information; experimental part, p. 3457 - 3459 (2012/05/20)
The first enantioselective synthesis of (-)-paeonilide is reported. Starting from inexpensive furan-3-carboxylic acid the targeted monoterpene was obtained in 12 steps via an asymmetric cyclopropanation-lactonization cascade and a stereoselective side chain insertion at an acetal-like position.
NOVEL N-OXIDES OF FURANYL-OXADIAZOLYL-DIAZABICYCLONONANE DERIVATIVES AND THEIR MEDICAL USE
-
Page/Page column 15, (2010/08/09)
This invention relates to novel N-oxides of certain furanyl-oxadiazolyl-diazabicyclononane derivatives and their use in the manufacture of pharmaceutical compositions. The compounds of the invention are found to be cholinergic ligands at the nicotinic acetylcholine receptors and modulators of the monoamine receptors and transporters. Due to their pharmacological profile the compounds of the invention may be useful for the treatment of diseases or disorders as diverse as those related to the cholinergic system of the central nervous system (CNS), the peripheral nervous system (PNS), diseases or disorders related to smooth muscle contraction, endocrine diseases or disorders, diseases or disorders related to neuro-degeneration, diseases or disorders related to inflammation, pain, and withdrawal symptoms caused by the termination of abuse of chemical substances.