1429-50-1Relevant articles and documents
-
Westerback,S. et al.
, p. 2567 - 2572 (1965)
-
Structure-Dependent Dissolution and Restructuring of Calcite Surfaces by Organophosphonates
Nalbach, Martin,Moschona, Argyri,Demadis, Konstantinos D.,Klassen, Stefanie,Bechstein, Ralf,Kühnle, Angelika
, p. 5867 - 5874 (2017)
Organophosphonates are well-known to strongly interact with the surfaces of various minerals, such as brucite, gypsum, and barite. In this work, we study the influence of six systematically varied organophosphonate molecules (tetraphosphonates and diphosphonates) on the dissolution process of the (10.4) surface of calcite. In order to pursue a systematic study, we have selected organophosphonates that exhibit similar structural features, but also systematic architectural differences. The effect of this class of additives on the dissolution process of the calcite (10.4) surface is evaluated using in situ dynamic atomic force microscopy. For all of the six organophosphonate derivatives, we observe a pronounced restructuring of the (10.4) cleavage plane of calcite, demonstrated by the formation of characteristically shaped etch pits. To elucidate their specific influence on the dissolution process of calcite (10.4), we vary systematically the number of functional end groups (two for the tetraphosphonates and one for the diphosphonates), the spacing between the functional ends through separating methylene groups (2, 6, and 12), as well as the pH of the solution (ranging from 2.6 up to 11.7). For each of the two groups of the organophosphonate derivatives, we observe the very same formation of etch pits (olive-shaped for the tetraphosphonate and triangular-shaped for the diphosphonate molecules), respectively. This finding indicates that the number of functional ends decisively determines the resulting calcite (10.4) surface morphology, whereas the size of the organophosphonate molecule within one group seems not to play any important role. For all of the molecules, the restructuring process of calcite (10.4) is qualitatively independent of the pH of the solution and, therefore, independent of the protonation/deprotonation states of the molecules. Our results reveal a general property of organophosphonate derivatives to induce surface restructuring of the calcite (10.4), which seems to be very robust against variations in both, different molecular structures and different protonation/deprotonation states.
METHOD FOR THE SYNTHESIS OF ALPHA-AMINOALKYLENEPHOSPHONIC ACID
-
Page/Page column 23, (2014/02/15)
The present invention is related to a new method for the synthesis of alpha-aminoalkylenephosphonic acid or its phosphonate esters comprising the steps of forming a reaction mixture by mixing a P-O-P anhydride moiety comprising compound, having one P-atom at the oxidation state (+111) and the other P-atom at the oxidation state (+111) or (+V), an aminoalkanecarboxylic acid and an acid catalyst, wherein said reaction mixture comprises an equivalent ratio of alpha-aminoalkylene carboxylic acid to P-O-P anhydride moieties of at least 0.2, and recovering the resulting alpha-aminoalkylene phosphonic acid compound or an ester thereof from the reaction mixture.
Green synthesis of poly(aminomethylenephosphonic) acids
Villemin, Didier,Moreau, Bernard,Elbilali, Abdelghani,Didi, Mohamed-Amine,Kaid, Mhamed,Jaffres, Paul-Alain
experimental part, p. 2511 - 2519 (2011/02/28)
The reaction of polyamines with phosphorous acid and formaldehyde in water under focused microwave irradiation provides a facile and rapid synthesis of poly(aminomethylenephosphonic) acids. Taylor & Francis Group, LLC.