15101-68-5Relevant articles and documents
Nickel-catalyzed α-alkylation of ketones with benzyl alcohols
Wu, Di,Wang, Yubin,Li, Min,Shi, Lei,Liu, Jichang,Liu, Ning
, (2021/11/04)
We reported an efficient method for α-alkylation of ketones with benzyl alcohols using the pyridine-bridged pincer-type N-heterocyclic carbenes nickel complexes as catalysts. A wide range of ketones and benzyl alcohols were efficiently converted into various alkylated products in moderate to high yields. In addition, these nickel complexes were also successfully applied for the synthesis of a wide range of quinoline derivatives.
Designed pincer ligand supported Co(ii)-based catalysts for dehydrogenative activation of alcohols: Studies onN-alkylation of amines, α-alkylation of ketones and synthesis of quinolines
Singh, Anshu,Maji, Ankur,Joshi, Mayank,Choudhury, Angshuman R.,Ghosh, Kaushik
, p. 8567 - 8587 (2021/06/30)
Base-metal catalystsCo1,Co2andCo3were synthesized from designed pincer ligandsL1,L2andL3having NNN donor atoms respectively.Co1,Co2andCo3were characterized by IR, UV-Vis. and ESI-MS spectroscopic studies. Single crystal X-ray diffraction studies were investigated to authenticate the molecular structures ofCo1andCo3. CatalystsCo1,Co2andCo3were utilized to study the dehydrogenative activation of alcohols forN-alkylation of amines, α-alkylation of ketones and synthesis of quinolines. Under optimized reaction conditions, a broad range of substrates including alcohols, anilines and ketones were exploited. A series of control experiments forN-alkylation of amines, α-alkylation of ketones and synthesis of quinolines were examined to understand the reaction pathway. ESI-MS spectral studies were investigated to characterize cobalt-alkoxide and cobalt-hydride intermediates. Reduction of styrene by evolved hydrogen gas during the reaction was investigated to authenticate the dehydrogenative nature of the catalysts. Probable reaction pathways were proposed forN-alkylation of amines, α-alkylation of ketones and synthesis of quinolines on the basis of control experiments and detection of reaction intermediates.
Iridium Complexes as Efficient Catalysts for Construction of α-Substituted Ketones via Hydrogen Borrowing of Alcohols in Water
Luo, Nianhua,Zhong, Yuhong,Wen, Huiling,Shui, Hongling,Luo, Renshi
, p. 1355 - 1364 (2021/03/03)
Ketones are of great importance in synthesis, biology, and pharmaceuticals. This paper reports an iridium complexes-catalyzed cross-coupling of alcohols via hydrogen borrowing, affording a series of α-alkylated ketones in high yield (86 %–95 %) and chemoselectivities (>99 : 1). This methodology has the advantages of low catalyst loading (0.1 mol%) and environmentally benign water as the solvent. Studies have shown the amount of base has a great impact on chemoselectivities. Meanwhile, deuteration experiments show water plays an important role in accelerating the reduction of the unsaturated ketones intermediates. Remarkably, a gram-scale experiment demonstrates this methodology of iridium-catalyzed cross-coupling of alcohols has potential application in the practical synthesis of α-alkylated ketones.
Method for synthesizing alpha-alkylated ketone in water
-
Paragraph 0037-0041, (2020/08/22)
The invention discloses a method for synthesizing alpha-alkylated ketone in water. The method comprises the following steps: adding ketone, compound alcohol, a transition metal iridium catalyst, an alkali and a solvent, namely water into a reaction container, carrying out a reflux reaction on a reaction mixture in the air for several hours, carrying out cooling to room temperature, carrying out rotary evaporation to remove the solvent, and carrying out column separation (ethyl acetate/petroleum ether) to obtain a target compound, namely alpha-alkylated ketone. A reaction equivalent substrate is used in the reaction process, so raw material waste is avoided; equivalent alkali is used, so better environmental protection performance is obtained; water reflux reaction conditions are milder; and non-toxic and harmless pure water is used as the solvent in the reaction, only water is generated as a by-product, so atom reaction economy is high, and the requirements of green chemistry are met.
Efficient Organoruthenium Catalysts for α-Alkylation of Ketones and Amide with Alcohols: Synthesis of Quinolines via Hydrogen Borrowing Strategy and their Mechanistic Studies
Maji, Ankur,Singh, Anshu,Singh, Neetu,Ghosh, Kaushik
, p. 3108 - 3125 (2020/05/18)
A new family of phosphine free organometallic ruthenium(II) catalysts (Ru1–Ru4) supported by bidentate NN Schiff base ligands (L1–L4 where L1=N,N-dimethyl-4-((2-phenyl-2-(pyridin-2-ylmethyl)hydrazineylidene)methyl) aniline, L2=N,N-diethyl-4-((2-phenyl-2-(pyridin-2-ylmethyl)hydrazineylidene)methyl)aniline, L3=N,N-dimethyl-4-((2-phenyl-2-(pyridin-2-yl)hydrazineylidene)methyl)- aniline and L4=N,N-diethyl-4-((2-phenyl-2-(pyridin-2-yl)hydrazineylidene)methyl) aniline) was prepared and characterized. These half-sandwich complexes acted as catalysts for C?C bond formation and exhibited excellent performance in the dehydrogenative coupling of ketones and amides. In the synthesis of C–C bonds, alcohols were utilized as the alkylating agent. A broad range of substrates, including sterically hindered ketones and alcohols, were well tolerated under the optimized conditions (TON up to 47000 and TOF up to 11750 h?1). This ruthenium (II) catalysts were also active towards the dehydrogenative cyclization of o-amino benzyl alcohol for the formation of quinolines derivatives. Various polysubstituted quinolines were synthesized in moderate to excellent yields (TON up to 71000 and TOF up to 11830 h?1). Control experiments were carried out and the ruthenium hydride intermediate was characterized to support the reaction mechanism and a probable reaction pathway of dehydrogenative coupling for the C?C bond formation has been proposed.
Phosphine-free pincer-ruthenium catalyzed biofuel production: High rates, yields and turnovers of solventless alcohol alkylation
Das, Babulal,Das, Kanu,Kumar, Akshai,Srivastava, Hemant Kumar,Yasmin, Eileen
, p. 8347 - 8358 (2020/12/31)
Phosphine-free pincer-ruthenium carbonyl complexes based on bis(imino)pyridine and 2,6-bis(benzimidazole-2-yl) pyridine ligands have been synthesized. For the β-alkylation of 1-phenyl ethanol with benzyl alcohol at 140 °C under solvent-free conditions, (Cy2NNN)RuCl2(CO) (0.00025 mol%) in combination with NaOH (2.5 mol%) was highly efficient (ca. 93% yield, 372?000 TON at 12?000 TO h-1). These are the highest reported values hitherto for a ruthenium based catalyst. The β-alkylation of various alcohol combinations was accomplished with ease which culminated to give 380?000 TON at 19?000 TO h-1 for the β-alkylation of 1-phenyl ethanol with 3-methoxy benzyl alcohol. DFT studies were complementary to mechanistic studies and indicate the β-hydride elimination step involving the extrusion of acetophenone to be the overall RDS. While the hydrogenation step is favored for the formation of α-alkylated ketone, the alcoholysis step is preferred for the formation of β-alkylated alcohol. The studies were extended for the upgradation of ethanol to biofuels. Among the pincer-ruthenium complexes based on bis(imino)pyridine, (Cy2NNN)RuCl2(CO) provided high productivity (335 TON at 170 TO h-1). Sterically more open pincer-ruthenium complexes such as (Bim2NNN)RuCl2(CO) based on the 2,6-bis(benzimidazole-2-yl) pyridine ligand demonstrated better reactivity and gave not only good ethanol conversion (ca. 58%) but also high turnovers (ca. 2100) with a good rate (ca. 710 TO h-1). Kinetic studies indicate first order dependence on concentration of both the catalyst and ethanol. Phosphine-free catalytic systems operating with unprecedented activity at a very low base loading to couple lower alcohols to higher alcohols of fuel and pharmaceutical importance are the salient features of this report. This journal is
The α-alkylation of ketones with alcohols in pure water catalyzed by a water-soluble Cp?Ir complex bearing a functional ligand
Meng, Chong,Xu, Jing,Tang, Yawen,Ai, Yao,Li, Feng
, p. 14057 - 14065 (2019/09/18)
A water-soluble dinuclear Cp?Ir complex bearing 4,4′,6,6′-tetrahydroxy-2,2′-bipyrimidine as a bridging ligand was found to be a highly effective catalyst for the α-alkylation of ketones with alcohols in pure water. In the presence of catalyst (0.5 mol%), a series of desirable products were obtained with high reaction economy under environmentally benign conditions. The importance of the hydroxy group in the ligand for catalytic hydrogen transfer was confirmed by mechanism experiments. Furthermore, the application of this catalytic system for the synthesis of a biologically active molecule donepezil in pure water has been accomplished. Notably, this research would facilitate the progress of C-C bond-forming reactions in water catalyzed by water-soluble metal-ligand bifunctional catalysts.
Ruthenium-Catalyzed β-Alkylation of Secondary Alcohols and α-Alkylation of Ketones via Borrowing Hydrogen: Dramatic Influence of the Pendant N-Heterocycle
Zhang, Chong,Zhao, Jiong-Peng,Hu, Bowen,Shi, Jing,Chen, Dafa
, p. 654 - 664 (2019/02/17)
Three bidentate ruthenium(II) complexes with a pyridonate fragment were prepared and fully characterized. These complexes are structurally similar, but differ in their pendant substituents. Complex 1 contains a phenyl unit, whereas complexes 2 and 3 have uncoordinated thienyl and thiazolyl groups, respectively. These complexes were tested as catalysts for β-alkylation of secondary alcohols with primary alcohols, and 3 shows the highest activity, suggesting the thiazolyl ring participates in the catalytic process. Furthermore, 3 is an excellent catalyst for α-alkylation of ketones with primary alcohols. Various α-alkylated ketones were synthesized in high yields, by using 0.05 mol % 3 and 0.25 equiv of t-BuOK within 30 min.
Proton-Coupled Electron Transfer: Transition-Metal-Free Selective Reduction of Chalcones and Alkynes Using Xanthate/Formic Acid
Prasanna, Ramanathan,Guha, Somraj,Sekar, Govindasamy
supporting information, p. 2650 - 2653 (2019/04/17)
Highly chemoselective reduction of α,β-unsaturated ketones to saturated ketones and stereoselective reduction of alkynes to (E)-alkenes has been developed under a transition-metal-free condition using a xanthate/formic acid mixture through proton-coupled electron transfer (PCET). Mechanistic experiments and DFT calculations support the possibility of a concerted proton electron-transfer (CPET) pathway. This Birch-type reduction demonstrates that a small nucleophilic organic molecule can be used as a single electron-transfer (SET) reducing agent with a proper proton source.
Selective Ketone Formations via Cobalt-Catalyzed β-Alkylation of Secondary Alcohols with Primary Alcohols
Pandey, Bedraj,Xu, Shi,Ding, Keying
supporting information, p. 7420 - 7423 (2019/10/02)
A homogeneous cobalt-catalyzed β-alkylation of secondary alcohols with primary alcohols to selectively synthesize ketones via acceptorless dehydrogenative coupling is reported for the first time. Notably, this transformation is environmentally benign and atom economical with water and hydrogen gas as the only byproducts.