1634-09-9Relevant articles and documents
Stereoselective Stille coupling reactions of 1,1-bis(trialkylstannyl)ethenes
Quayle, Peter,Wang, Jingyang,Xu, Jie,Urch, Christopher J.
, p. 485 - 488 (1998)
Stille coupling of 1,1-bis(tri-n-butylstannyl)ethenes proceeds in a stereoselective manner to afford the E-vinylstannanes. Repetition of this sequence affords a new route to hi-substituted alkenes. Intramolecular Stille coupling of a suitable vinyl bromide affords a pyranyl-derived vinylstannane. In certain cases, with bulky electrophiles, butyl migration rather than that of the sp2-hybridised centre is observed. A working model is put forward in order to rationalise these results.
METHOD FOR PRODUCING ARENE COMPOUNDS AND ARENE COMPOUNDS PRODUCED BY THE SAME
-
Paragraph 0110, (2021/06/26)
Provided is a method for producing (alkyl)arene compounds represented by Formulae 3-1, 3-2, and 3-3 by the Friedel-Crafts alkylation reaction of alkyl halide compounds and arene compounds using organic phosphine compounds as a catalyst.
Scalable Negishi Coupling between Organozinc Compounds and (Hetero)Aryl Bromides under Aerobic Conditions when using Bulk Water or Deep Eutectic Solvents with no Additional Ligands
Dilauro, Giuseppe,Azzollini, Claudia S.,Vitale, Paola,Salomone, Antonio,Perna, Filippo M.,Capriati, Vito
supporting information, p. 10632 - 10636 (2021/04/09)
Pd-catalyzed Negishi cross-coupling reactions between organozinc compounds and (hetero)aryl bromides have been reported when using bulk water as the reaction medium in the presence of NaCl or the biodegradable choline chloride/urea eutectic mixture. Both C(sp3)-C(sp2) and C(sp2)-C(sp2) couplings have been found to proceed smoothly, with high chemoselectivity, under mild conditions (room temperature or 60 °C) in air, and in competition with protonolysis. Additional benefits include very short reaction times (20 s), good to excellent yields (up to 98 %), wide substrate scope, and the tolerance of a variety of functional groups. The proposed novel protocol is scalable, and the practicability of the method is further highlighted by an easy recycling of both the catalyst and the eutectic mixture or water.
Cobalt?NHC Catalyzed C(sp2)?C(sp3) and C(sp2)?C(sp2) Kumada Cross-Coupling of Aryl Tosylates with Alkyl and Aryl Grignard Reagents
Piontek, Aleksandra,Och?dzan-Siod?ak, Wioletta,Bisz, Elwira,Szostak, Michal
, p. 202 - 206 (2020/12/01)
The first cobalt-catalyzed cross-coupling of aryl tosylates with alkyl and aryl Grignard reagents is reported. The catalytic system uses CoF3 and NHCs (NHC=N-heterocyclic carbene) as ancillary ligands. The reaction proceeds via highly selective C?O bond functionalization, leading to the corresponding products in up to 98 % yield. The employment of alkyl Grignard reagents allows to achieve a rare C(sp2)?C(sp3) cross-coupling of C?O electrophiles, circumventing isomerization and β-hydride elimination problems. The use of aryl Grignards leads to the formation of biaryls. The C?O cross-coupling sets the stage for a sequential cross-coupling by exploiting the orthogonal selectivity of the catalytic system.
Palladium-catalyzed reaction of γ-silylated allyl acetates proceeding through 1,2-shift of a substituent on silicon
Horino, Yoshikazu,Ishibashi, Mayo,Nakasai, Kosuke,Korenaga, Toshinobu
, (2020/08/28)
The palladium-catalyzed reaction of γ-silylated allyl acetates with water in the presence of CsF induces a previously unprecedented 1,2-shift of a substituent on silicon to produce allylsilanes in situ. The catalytic activity of the palladium increased when using an electron-poor phosphine ligand possessing fluorinated substituents. Further investigation of the reaction revealed that the approximate order of the migratory aptitude of groups from silicon was PhC≡C, allyl > Bn > Ph, vinyl > alkyl (Me, Et). A density functional theory study was employed to explore the reaction mechanism. Finally, the Hosomi–Sakurai-type allylation of aldehydes with in situ-generated α,γ-disubstituted allylsilanes was also investigated.
Water and Sodium Chloride: Essential Ingredients for Robust and Fast Pd-Catalysed Cross-Coupling Reactions between Organolithium Reagents and (Hetero)aryl Halides
Dilauro, Giuseppe,Quivelli, Andrea Francesca,Vitale, Paola,Capriati, Vito,Perna, Filippo Maria
supporting information, p. 1799 - 1802 (2019/01/25)
Direct palladium-catalysed cross-couplings between organolithium reagents and (hetero)aryl halides (Br, Cl) proceed fast, cleanly and selectively at room temperature in air, with water as the only reaction medium and in the presence of NaCl as a cheap additive. Under optimised reaction conditions, a water-accelerated catalysis is responsible for furnishing C(sp3)–C(sp2), C(sp2)–C(sp2), and C(sp)–C(sp2) cross-coupled products, in competition with protonolysis, within a reaction time of 20 s, in yields of up to 99 %, and in the absence of undesired dehalogenated/homocoupling side products even when challenging secondary organolithiums serve as the starting material. It is worth noting that the proposed protocol is scalable and the catalyst and water can easily and successfully be recycled up to 10 times, with an E-factor as low as 7.35.
Murahashi Cross-Coupling at ?78 °C: A One-Pot Procedure for Sequential C?C/C?C, C?C/C?N, and C?C/C?S Cross-Coupling of Bromo-Chloro-Arenes
Sinha, Narayan,Heijnen, Dorus,Feringa, Ben L.,Organ, Michael G.
supporting information, p. 9180 - 9184 (2019/07/04)
The coupling of organolithium reagents, including strongly hindered examples, at cryogenic temperatures (as low as ?78 °C) has been achieved with high-reactivity Pd-NHC catalysts. A temperature-dependent chemoselectivity trigger has been developed for the selective coupling of aryl bromides in the presence of chlorides. Building on this, a one-pot, sequential coupling strategy is presented for the rapid construction of advanced building blocks. Importantly, one-shot addition of alkyllithium compounds to Pd cross-coupling reactions has been achieved, eliminating the need for slow addition by syringe pump.
Sterically hindered N-heterocyclic carbene/palladium(ii) catalyzed Suzuki-Miyaura coupling of nitrobenzenes
Chen, Kai,Chen, Wei,Yi, Xiaofei,Chen, Wanzhi,Liu, Miaochang,Wu, Huayue
supporting information, p. 9287 - 9290 (2019/08/08)
Palladium-catalyzed denitrative Suzuki coupling of nitroarenes using 2-aryl-5-(2,4,6-triisopropylphenyl)-2,3-imidazolylidene[1,5-a]pyridines as the ligands is described. The key to success is the use of the NHC ligands which show strong donating ability and suitable steric hindrance allowing the successful oxidative addition of Ar-NO2 bonds. Both aromatic and aliphatic boronic acids are tolerated, and a variety of biphenyls and alkylarenes were obtained in good to excellent yields.
Nickel-Catalyzed C(sp2)?C(sp3) Kumada Cross-Coupling of Aryl Tosylates with Alkyl Grignard Reagents
Piontek, Aleksandra,Och?dzan-Siod?ak, Wioletta,Bisz, Elwira,Szostak, Michal
supporting information, p. 2329 - 2336 (2019/04/13)
Aryl tosylates are an attractive class of electrophiles for cross-coupling reactions due to ease of synthesis, low price, and the employment of C?O electrophiles, however, the reactivity of aryl tosylates is low. Herein, we report the Ni-catalyzed C(sp2)?C(sp3) Kumada cross-coupling of aryl tosylates with primary and secondary alkyl Grignard reagents. The method delivers valuable alkyl arenes by cross-coupling with challenging alkyl organometallics possessing β-hydrogens that are prone to β-hydride elimination and homo-coupling. The reaction is catalyzed by an air- and moisture stable-Ni(II) precatalyst. A broad range of electronically-varied aryl tosylates, including bis-tosylates, underwent this transformation, and many examples are suitable at mild room temperature conditions. The combination of Ar?X cross-coupling with the facile Ar?OH activation/cross-coupling strategy permits for orthogonal cross-coupling with challenging alkyl organometallics. Furthermore, we demonstrate that the method operates with TON reaching 2000, which is one of the highest turnovers observed to date in Ni-catalyzed cross-couplings. (Figure presented.).
Heterogeneous Nickel-Catalyzed Cross-Coupling between Aryl Chlorides and Alkyllithiums Using a Polystyrene-Cross-Linking Bisphosphine Ligand
Yamazaki, Yuki,Arima, Nozomi,Iwai, Tomohiro,Sawamura, Masaya
, p. 2250 - 2254 (2019/03/21)
A polystyrene-cross-linking bisphosphine ligand PS-DPPBz was used for Ni-catalyzed cross-coupling with organolithiums. A bench-stable precatalyst [NiCl2(PS-DPPBz)] enabled efficient coupling reactions between aryl chlorides and alkyllithiums. The heterogeneous Ni system showed good reusability. (Figure presented.).