Welcome to LookChem.com Sign In|Join Free

CAS

  • or

1979-49-3

Post Buying Request

1979-49-3 Suppliers

Recommended suppliersmore

  • Product
  • FOB Price
  • Min.Order
  • Supply Ability
  • Supplier
  • Contact Supplier

1979-49-3 Usage

General Description

1-(3-Fluorophenyl)-2-nitroethene is a chemical compound with the molecular formula C8H6FNO2. It is a nitroalkene with a nitro group and a fluoro-substituted phenyl ring. 1-(3-FLUOROPHENYL)-2-NITROETHENE is mainly used as an intermediate in the synthesis of various organic compounds, including pharmaceuticals, agrochemicals, and dyes. It is known to have potential applications in the field of organic synthesis due to its reactivity and ability to undergo various chemical reactions. Additionally, it has been studied for its potential biological activities, such as its antimicrobial and anti-inflammatory properties. However, further research is needed to fully understand the potential uses and effects of 1-(3-Fluorophenyl)-2-nitroethene.

Check Digit Verification of cas no

The CAS Registry Mumber 1979-49-3 includes 7 digits separated into 3 groups by hyphens. The first part of the number,starting from the left, has 4 digits, 1,9,7 and 9 respectively; the second part has 2 digits, 4 and 9 respectively.
Calculate Digit Verification of CAS Registry Number 1979-49:
(6*1)+(5*9)+(4*7)+(3*9)+(2*4)+(1*9)=123
123 % 10 = 3
So 1979-49-3 is a valid CAS Registry Number.

1979-49-3SDS

SAFETY DATA SHEETS

According to Globally Harmonized System of Classification and Labelling of Chemicals (GHS) - Sixth revised edition

Version: 1.0

Creation Date: Aug 16, 2017

Revision Date: Aug 16, 2017

1.Identification

1.1 GHS Product identifier

Product name 1-fluoro-3-(2-nitroethenyl)benzene

1.2 Other means of identification

Product number -
Other names -

1.3 Recommended use of the chemical and restrictions on use

Identified uses For industry use only.
Uses advised against no data available

1.4 Supplier's details

1.5 Emergency phone number

Emergency phone number -
Service hours Monday to Friday, 9am-5pm (Standard time zone: UTC/GMT +8 hours).

More Details:1979-49-3 SDS

1979-49-3Relevant articles and documents

Rationalizing the Unprecedented Stereochemistry of an Enzymatic Nitrile Synthesis through a Combined Computational and Experimental Approach

Yavuzer, Hilmi,Asano, Yasuhisa,Gr?ger, Harald

supporting information, p. 19162 - 19168 (2021/07/26)

In this contribution, the unique and unprecedented stereochemical phenomenon of an aldoxime dehydratase-catalyzed enantioselective dehydration of racemic E- and Z-aldoximes with selective formation of both enantiomeric forms of a chiral nitrile is rationalized by means of molecular modelling, comprising in silico mutations and docking studies. This theoretical investigation gave detailed insight into why with the same enzyme the use of racemic E- and Z-aldoximes leads to opposite forms of the chiral nitrile. The calculated mutants with a larger or smaller cavity in the active site were then prepared and used in biotransformations, showing the theoretically predicted decrease and increase of the enantioselectivities in these nitrile syntheses. This validated model also enabled the rational design of mutants with a smaller cavity, which gave superior enantioselectivities compared to the known wild-type enzyme, with excellent E-values of up to E>200 when the mutant OxdRE-Leu145Phe was utilized.

Organocatalytic Asymmetric Synthesis of Aza-Spirooxindoles via Michael/Friedel-Crafts Cascade Reaction of 1,3-Nitroenynes and 3-Pyrrolyloxindoles

Ni, Qijian,Wang, Xuyang,Zeng, Da,Wu, Qianling,Song, Xiaoxiao

supporting information, p. 2273 - 2278 (2021/04/05)

An asymmetric [3+3] cyclization of nitroenynes and 3-pyrrolyloxindoles has been realized with a chiral bifunctional squaramide catalyst. This Michael/Friedel-Crafts cascade strategy provides a facile and efficient access to enantioenriched polycyclic aza-spirooxindoles with 32-95% isolated yields and excellent stereocontrol under mild reaction conditions.

Biological evaluation and SAR analysis of novel covalent inhibitors against fructose-1,6-bisphosphatase

Chen, Haifeng,Guo, Yanrong,Han, Xinya,Hu, Wei,Huang, Yunyuan,Ren, Yanliang,Tang, Zilong,Wang, Qi,Wei, Lin,Xia, Qinfei,Yan, Jufen

supporting information, (2020/07/23)

Fructose-1,6-bisphosphatase (FBPase) is an attractive target for affecting the GNG pathway. In our previous study, the C128 site of FBPase has been identified as a new allosteric site, where several nitrovinyl compounds can bind to inhibit FBPase activity. Herein, a series of nitrostyrene derivatives were further synthesized, and their inhibitory activities against FBPase were investigated in vitro. Most of the prepared nitrostyrene compounds exhibit potent FBPase inhibition (IC50 3, CF3, OH, COOH, or 2-nitrovinyl were installed at the R2 (meta-) position of the benzene ring, the FBPase inhibitory activities of the resulting compounds increased 4.5–55 folds compared to those compounds with the same groups at the R1 (para-) position. In addition, the preferred substituents at the R3 position were Cl or Br, thus compound HS36 exhibited the most potent inhibitory activity (IC50 = 0.15 μM). The molecular docking and site-directed mutation suggest that C128 and N125 are essential for the binding of HS36 and FBPase, which is consistent with the C128-N125-S123 allosteric inhibition mechanism. The reaction enthalpy calculations show that the order of the reactions of compounds with thiol groups at the R3 position is Cl > H > CH3. CoMSIA analysis is consistent with our proposed binding mode. The effect of compounds HS12 and HS36 on glucose production in primary mouse hepatocytes were further evaluated, showing that the inhibition was 71% and 41% at 100 μM, respectively.

Post a RFQ

Enter 15 to 2000 letters.Word count: 0 letters

Attach files(File Format: Jpeg, Jpg, Gif, Png, PDF, PPT, Zip, Rar,Word or Excel Maximum File Size: 3MB)

1

What can I do for you?
Get Best Price

Get Best Price for 1979-49-3