Welcome to LookChem.com Sign In|Join Free

CAS

  • or

2187-07-7

Post Buying Request

2187-07-7 Suppliers

Recommended suppliersmore

  • Product
  • FOB Price
  • Min.Order
  • Supply Ability
  • Supplier
  • Contact Supplier

2187-07-7 Usage

Chemical Properties

WHITE VERY FINE CRYSTALLINE POWDER

Check Digit Verification of cas no

The CAS Registry Mumber 2187-07-7 includes 7 digits separated into 3 groups by hyphens. The first part of the number,starting from the left, has 4 digits, 2,1,8 and 7 respectively; the second part has 2 digits, 0 and 7 respectively.
Calculate Digit Verification of CAS Registry Number 2187-07:
(6*2)+(5*1)+(4*8)+(3*7)+(2*0)+(1*7)=77
77 % 10 = 7
So 2187-07-7 is a valid CAS Registry Number.
InChI:InChI=1/C8H17NO2/c1-2-3-4-5-6-7(9)8(10)11/h7H,2-6,9H2,1H3,(H,10,11)/t7-/m1/s1

2187-07-7SDS

SAFETY DATA SHEETS

According to Globally Harmonized System of Classification and Labelling of Chemicals (GHS) - Sixth revised edition

Version: 1.0

Creation Date: Aug 18, 2017

Revision Date: Aug 18, 2017

1.Identification

1.1 GHS Product identifier

Product name 2-aminooctanoic acid

1.2 Other means of identification

Product number -
Other names L-2-AMINO-CAPRYLIC ACID

1.3 Recommended use of the chemical and restrictions on use

Identified uses For industry use only.
Uses advised against no data available

1.4 Supplier's details

1.5 Emergency phone number

Emergency phone number -
Service hours Monday to Friday, 9am-5pm (Standard time zone: UTC/GMT +8 hours).

More Details:2187-07-7 SDS

2187-07-7Relevant articles and documents

New Aspercryptins, Lipopeptide Natural Products, Revealed by HDAC Inhibition in Aspergillus nidulans

Henke, Matthew T.,Soukup, Alexandra A.,Goering, Anthony W.,McClure, Ryan A.,Thomson, Regan J.,Keller, Nancy P.,Kelleher, Neil L.

, p. 2117 - 2123 (2016)

Unlocking the biochemical stores of fungi is key for developing future pharmaceuticals. Through reduced expression of a critical histone deacetylase in Aspergillus nidulans, increases of up to 100-fold were observed in the levels of 15 new aspercryptins, recently described lipopeptides with two noncanonical amino acids derived from octanoic and dodecanoic acids. In addition to two NMR-verified structures, MS/MS networking helped uncover an additional 13 aspercryptins. The aspercryptins break the conventional structural orientation of lipopeptides and appear "backward" when compared to known compounds of this class. We have also confirmed the 14-gene aspercryptin biosynthetic gene cluster, which encodes two fatty acid synthases and several enzymes to convert saturated octanoic and dodecanoic acid to α-amino acids.

Synthesis of 2-Amino Acids via Selective Mono-N-alkylation of Trichloroacetamide by 2-Bromo Carboxylic Esters under Solid-Liquid Phase-Transfer Catalysis Conditions

Albanese, Domenico,Landini, Dario,Penso, Michele

, p. 1603 - 1605 (1992)

-

Preparative Asymmetric Synthesis of Canonical and Non-canonical a-amino Acids through Formal Enantioselective Biocatalytic Amination of Carboxylic Acids

Dennig, Alexander,Blaschke, Fabio,Gandomkar, Somayyeh,Tassano, Erika,Nidetzky, Bernd

supporting information, p. 1348 - 1358 (2019/10/28)

Chemical and biocatalytic synthesis of non-canonical a-amino acids (ncAAs) from renewable feedstocks and using mild reaction conditions has not efficiently been solved. Here, we show the development of a three-step, scalable and modular one-pot biocascade for linear conversion of renewable fatty acids (FAs) into enantiopure l-a-amino acids. In module 1, selective a-hydroxylation of FAs is catalyzed by the P450 peroxygenase P450CLA. By using an automated H2O2 supplementation system, efficient conversion (46 to >99%; TTN>3300) of a broad range of FAs (C6:0 to C16:0) into valuable a-hydroxy acids (a-HAs; >90% a-selective) is shown on preparative scale (up to 2.3 gL1 isolated product). In module 2, a redox-neutral hydrogen borrowing cascade (alcohol dehydrogenase/amino acid dehydrogenase) allowed further conversion of a-HAs into l-a-AAs (20 to 99%). Enantiopure l-a-AAs (e.e. >99%) including the pharma synthon l-homo-phenylalanine can be obtained at product titers of up to 2.5 gL1. Based on renewables and excellent atom economy, this biocascade is among the shortest and greenest synthetic routes to structurally diverse and industrially relevant ncAAs.

Preparative Asymmetric Synthesis of Canonical and Non-canonical α-amino Acids Through Formal Enantioselective Biocatalytic Amination of Carboxylic Acids

Dennig, Alexander,Blaschke, Fabio,Gandomkar, Somayyeh,Tassano, Erika,Nidetzky, Bernd

supporting information, (2019/02/09)

Chemical and biocatalytic synthesis of non-canonical α-amino acids (ncAAs) from renewable feedstocks and using mild reaction conditions has not efficiently been solved. Here, we show the development of a three-step, scalable and modular one-pot biocascade for linear conversion of renewable fatty acids (FAs) into enantiopure l-α-amino acids. In module 1, selective α-hydroxylation of FAs is catalyzed by the P450 peroxygenase P450CLA. By using an automated H2O2 supplementation system, efficient conversion (46 to >99%; TTN>3300) of a broad range of FAs (C6:0 to C16:0) into valuable α-hydroxy acids (α-HAs; >90% α-selective) is shown on preparative scale (up to 2.3 g L?1 isolated product). In module 2, a redox-neutral hydrogen borrowing cascade (alcohol dehydrogenase/amino acid dehydrogenase) allowed further conversion of α-HAs into l-α-AAs (20 to 99%). Enantiopure l-α-AAs (e.e. >99%) including the pharma synthon l-homo-phenylalanine can be obtained at product titers of up to 2.5 g L?1. Based on renewables and excellent atom economy, this biocascade is among the shortest and greenest synthetic routes to structurally diverse and industrially relevant ncAAs. (Figure presented.).

Post a RFQ

Enter 15 to 2000 letters.Word count: 0 letters

Attach files(File Format: Jpeg, Jpg, Gif, Png, PDF, PPT, Zip, Rar,Word or Excel Maximum File Size: 3MB)

1

What can I do for you?
Get Best Price

Get Best Price for 2187-07-7