22966-25-2Relevant articles and documents
Design, synthesis, biological evaluation, and molecular docking of chalcone derivatives as anti-inflammatory agents
Li, Jingfen,Li, Dong,Xu, Yiming,Guo, Zhenbo,Liu, Xu,Yang, Hua,Wu, Lichuan,Wang, Lisheng
, p. 602 - 606 (2017)
In this study, two series of 35 new chalcone derivatives containing aryl-piperazine or aryl-sulfonyl-piperazine fragment were synthesized and their structures were characterized by1H,13C and ESI-MS. The in vivo and in vitro anti-inflammatory activities of target compounds were evaluated by using classical para-xylene-induced mice ear-swelling model and ELISA assays. Furthermore, docking studies were performed in COX-2 (4PH9). The in vivo anti-inflammatory assays indicated that most of the target compounds showed significant anti-inflammatory activities. Docking results revealed that the anti-inflammatory activities of compounds correlated with their docking results. Especially, compound 6o exhibited the most potent anti-inflammatory activity in vivo with the lowest docking score of ?17.4?kcal/mol and could significantly inhibit the release of LPS-induced IL-6 and TNF-α in a dose-dependent manner in vitro.
Borane-Catalyzed, Chemoselective Reduction and Hydrofunctionalization of Enones Enabled by B-O Transborylation
Nicholson, Kieran,Langer, Thomas,Thomas, Stephen P.
supporting information, p. 2498 - 2504 (2021/04/13)
The use of stoichiometric organoborane reductants in organic synthesis is well established. Here these reagents have been rendered catalytic through an isodesmic B-O/B-H transborylation applied in the borane-catalyzed, chemoselective alkene reduction and formal hydrofunctionalization of enones. The reaction was found to proceed by a 1,4-hydroboration of the enone and B-O/B-H transborylation with HBpin, enabling catalyst turnover. Single-turnover and isotopic labeling experiments supported the proposed mechanism of catalysis with 1,4-hydroboration and B-O/B-H transborylation as key steps.
Reaction rate differences between organotrifluoroborates and boronic acids in BINOL-catalyzed conjugate addition to enones
Brooks, Bailey,Hiller, Noemi,May, Jeremy A.
supporting information, (2021/09/28)
Enantioselective organocatalysis has been successfully employed in combination with trifluoroborate reagents for novel organic transformations over the last decade. However, no experimental rate studies of these reactions have been reported. Herein we report Hammett plot analysis of the organocatalyzed enantioselective conjugate addition of alkenyl, aryl, and heteroaryl trifluoroborate salts to chalcone derivatives with substitution at both the β-aryl and keto-aryl positions. The rate trend for keto-aryl substitution diverges from that of boronic acid nucleophiles in that the keto-aryl substituent for trifluoroborate salts does not measurably impact reaction rate in a manner consistent with charge stabilization. In addition, variable temperature NMR in combination with quantitative thin-layer chromatography (TLC) analysis suggests that the reaction is impacted by the low solubility of the trifluoroborate salts, so particle size and stirring speed affect reaction rates.
Modular access to 1,2-allenyl ketones based on a photoredox-catalysed radical-polar crossover process
Du, Chan,Fang, Jianghua,Fang, Yewen,Lei, Wan,Li, Yan,Liu, Yongjun
supporting information, p. 8502 - 8506 (2021/10/20)
Herein, a new protocol dealing with the preparation of 1,2-allenyl ketones has been successfully developedviathe reactions of enynes with radicals enabled by dual photoredox/copper catalysis. Based on the results of a deuteration experiment and the competition reaction between cyclopropanation and allenation, the mechanism based on a photoredox-neutral-catalysed radical-polar crossover process has been proposed. Synthetic applications of allenes have also been demonstrated.
Green method for high-selectivity synthesis of chalcone compounds
-
Paragraph 0055-0058, (2021/10/02)
Under the condition of air, the water-soluble inorganic weak base is used as a catalyst to catalyze the hydrogen transfer reaction of the propargyl alcohol compound, so that the green synthesis of the high-trans selective chalcone compound is realized. Reaction temperature: 80 - 120 °C and reaction time 12 - 48 hours. To the technical scheme, any transition metal catalyst and ligand do not need to be used, inert gas protection is not needed, no other byproducts are generated, the atom economy 100%, green and environment friendliness are avoided, and the product is a high-selectivity (E)-type product. The reaction conditions are relatively low in requirement. Compared with the prior art, the alkali catalyst is obvious in advantages, and has a certain application prospect in the fields of organic synthesis, biochemistry, medicine and the like.
Synthesis of Ketones by C?H Functionalization of Aldehydes with Boronic Acids under Transition-Metal-Free Conditions
Roscales, Silvia,Csáky, Aurelio G.
supporting information, p. 8728 - 8732 (2021/03/16)
A method for the synthesis of ketones from aldehydes and boronic acids via a transition-metal-free C?H functionalization reaction is reported. The method employs nitrosobenzene as a reagent to drive the simultaneous activation of the boronic acid as a boronate and the activation of the C?H bond of the aldehyde as an iminium species that triggers the key C?C bond-forming step via an intramolecular migration from boron to carbon. These findings constitute a practical, scalable, and operationally straightforward method for the synthesis of ketones.
Biocatalytic green alternative to existing hazardous reaction media: Synthesis of chalcone and flavone derivatives via the Claisen-Schmidt reaction at room temperature
Tamuli, Kashyap J.,Sahoo, Ranjan K.,Bordoloi, Manobjyoti
supporting information, p. 20956 - 20965 (2020/12/31)
Owing to the increasing amount of waste materials around the globe, the conversion of waste or secondary by-products to value-added products for various applications has gained significant interest. Herein, two novel agro-food waste products, Musa sp. 'Malbhog' peel ash (MMPA) and Musa Champa Hort. ex Hook. F. peel ash (MCPA) are used as catalysts to promote an inexpensive, efficient and eco-friendly carbon-carbon bond forming crossed aldol reaction at room temperature in solvent free conditions. Furthermore, the resulting products were subjected to reactions with these promoters in an oxygen atmosphere and led to the formation of novel flavone derivatives. Moreover, the used catalysts were properly characterized using different sophisticated analytical techniques such as Fourier-transform infrared spectroscopy (FT-IR), X-ray diffractometry (XRD), Brunauer-Emmett-Teller analysis (BET), Raman spectroscopy, scanning electron microscopy energy dispersive X-ray spectroscopy (SEM-EDS), transition electron microscopy (TEM), X-ray photoelectron spectroscopy (XPS) and thermogravimetric analysis (TGA) along with element detection using atomic absorption spectroscopy and ion chromatographic methods. These two approaches are metal free, as well as being devoid of any extra additives, co-catalysts, harsh conditions, the use of column chromatography for purification and result in a higher yield of the product within a short space of time. The catalytic abilities of the promoter were also examined to synthesize important bioactive molecules such as butein and apigenin at room temperature. With gram scale synthesis of the chalcone derivatives, the used catalysts (MMPA and MCPA) were further reused for five cycles and did not demonstrate any loss in catalytic activity.
BIOREDUCIBLE N-OXIDE-BASED PROBES FOR IMAGING OF HYPOXIA
-
Paragraph 0209, (2020/03/09)
Hypoxia occurs when limited oxygen supply impairs physiological functions and is a pathological hallmark of many diseases including cancer and ischemia. Thus, detection of hypoxia can guide treatment planning and serve as a predictor of patient prognosis. Current methods suffer from invasiveness, poor resolution and low specificity. To address these limitations, various hypoxia-responsive probes (HyPs) for photoacoustic imaging are disclosed. The emerging modality converts safe, non-ionizing light to ultrasound waves, enabling acquisition of high-resolution 3D images in deep tissue. The HyPs feature an N-oxide trigger that is reduced in the absence of oxygen by haem proteins such as CYP450 enzymes. Reduction of HyPs produce a spectrally distinct product, facilitating identification via photoacoustic imaging. HyPs exhibit selectivity for hypoxic activation in vitro, in living cells and in multiple disease models in vivo. HyPs are also compatible with NIR fluorescence imaging, establishing its versatility as a multimodal imaging agent.
N-Heterocyclic Carbene Catalyzed Synthesis of Trisubstituted Epoxides via Tandem Amidation/Epoxidation Sequence
Devi, E. Sankari,Pavithra, Thangavel,Tamilselvi,Nagarajan, Subbiah,Sridharan, Vellaisamy,Maheswari, C. Uma
supporting information, p. 3576 - 3580 (2020/04/20)
A tandem amidation/epoxidation sequence between various substituted chalcones and N,N-dimethylformamide (DMF) for the synthesis of trisubstituted epoxides employing N-heterocyclic carbene catalysis was developed. This reaction was performed under metal-free conditions in the presence of tert-butyl hydroperoxide (TBHP) as the oxidant. Trisubstituted epoxides bearing a ketone and an amide functionality (N,N-dimethyl formyl group) were synthesized starting from a wide range of chalcones in moderate to good yields with excellent diastereoselectivity.
Highly Enantioselective Epoxidation of α,β-Unsaturated Ketones Using Amide-Based Cinchona Alkaloids as Hybrid Phase-Transfer Catalysts
Jurczak, Janusz,Majdecki, Maciej,Tyszka-Gumkowska, Agata
supporting information, (2020/11/13)
A series of 20 one chiral epoxides were obtained with excellent yields (up to 99%) and enantioselectivities (up to >99% ee) using hybrid amide-based Cinchona alkaloids. Our method is characterized by low catalyst loading (0.5 mol %) and short reaction times. Moreover, the epoxidation process can be carried out in 10 cycles, without further catalyst addition to the reaction mixture. This methodology significantly enhance the scale of the process using very low catalyst loading.