Welcome to LookChem.com Sign In|Join Free

CAS

  • or

23846-71-1

Post Buying Request

23846-71-1 Suppliers

Recommended suppliersmore

  • Product
  • FOB Price
  • Min.Order
  • Supply Ability
  • Supplier
  • Contact Supplier

23846-71-1 Usage

Check Digit Verification of cas no

The CAS Registry Mumber 23846-71-1 includes 8 digits separated into 3 groups by hyphens. The first part of the number,starting from the left, has 5 digits, 2,3,8,4 and 6 respectively; the second part has 2 digits, 7 and 1 respectively.
Calculate Digit Verification of CAS Registry Number 23846-71:
(7*2)+(6*3)+(5*8)+(4*4)+(3*6)+(2*7)+(1*1)=121
121 % 10 = 1
So 23846-71-1 is a valid CAS Registry Number.

23846-71-1SDS

SAFETY DATA SHEETS

According to Globally Harmonized System of Classification and Labelling of Chemicals (GHS) - Sixth revised edition

Version: 1.0

Creation Date: Aug 17, 2017

Revision Date: Aug 17, 2017

1.Identification

1.1 GHS Product identifier

Product name [3H]-Alprenolol

1.2 Other means of identification

Product number -
Other names -

1.3 Recommended use of the chemical and restrictions on use

Identified uses For industry use only.
Uses advised against no data available

1.4 Supplier's details

1.5 Emergency phone number

Emergency phone number -
Service hours Monday to Friday, 9am-5pm (Standard time zone: UTC/GMT +8 hours).

More Details:23846-71-1 SDS

23846-71-1Relevant articles and documents

Continuous flow upgrading of glycerol toward oxiranes and active pharmaceutical ingredients thereof

Morodo, Romain,Gérardy, Romaric,Petit, Guillaume,Monbaliu, Jean-Christophe M.

, p. 4422 - 4433 (2019/08/21)

A robust continuous flow procedure for the transformation of bio-based glycerol into high value-added oxiranes (epichlorohydrin and glycidol) is presented. The flow procedure features a central hydrochlorination/dechlorination sequence and provides economically and environmentally favorable conditions involving an organocatalyst and aqueous solutions of hydrochloric acid and sodium hydroxide. Pimelic acid (10 mol%) shows an exceptional catalytic activity (>99% conversion of glycerol, a high selectivity toward 1,3-dichloro-2-propanol and 81% cumulated yield toward intermediate chlorohydrins) for the hydrochlorination of glycerol (140 °C) with 36 wt% aqueous HCl. These conditions are validated on a sample of crude bio-based glycerol. The dechlorination step is effective (quantitative conversion based on glycerol) with concentrated aqueous sodium hydroxide (20 °C) and can be directly concatenated to the hydrochlorination step, hence providing a ca. 2:3 separable mixture of glycidol and epichlorohydrin (74% cumulated yield). An in-line membrane separation unit is included downstream, providing usable streams of epichlorohydrin (in MTBE, with an optional concentrator) and glycidol (in water). The scalability of the dechlorination step is then assessed in a commercial pilot-scale continuous flow reactor. Next, bio-based epichlorohydrin is further utilized for the continuous flow preparation of β-amino alcohol active pharmaceutical ingredients including propranolol (hypertension, WHO essential), naftopidil (prostatic hyperplasia) and alprenolol (angina pectoris) within a concatenable two-step procedure using a FDA class 3 solvent (DMSO). This work provides the first example of direct upgrading of bio-based glycerol into high value-added pharmaceuticals under continuous flow conditions.

Effect of basic and acidic additives on the separation of some basic drug enantiomers on polysaccharide-based chiral columns with acetonitrile as mobile phase

Gogaladze, Khatuna,Chankvetadze, Lali,Tsintsadze, Maia,Farkas, Tivadar,Chankvetadze, Bezhan

, p. 228 - 234 (2015/03/18)

The separation of enantiomers of 16 basic drugs was studied using polysaccharide-based chiral selectors and acetonitrile as mobile phase with emphasis on the role of basic and acidic additives on the separation and elution order of enantiomers. Out of the studied chiral selectors, amylose phenylcarbamate-based ones more often showed a chiral recognition ability compared to cellulose phenylcarbamate derivatives. An interesting effect was observed with formic acid as additive on enantiomer resolution and enantiomer elution order for some basic drugs. Thus, for instance, the enantioseparation of several β-blockers (atenolol, sotalol, toliprolol) improved not only by the addition of a more conventional basic additive to the mobile phase, but also by the addition of an acidic additive. Moreover, an opposite elution order of enantiomers was observed depending on the nature of the additive (basic or acidic) in the mobile phase.

Asymmetric hydrolytic kinetic resolution with recyclable polymeric Co(iii)-salen complexes: A practical strategy in the preparation of (S)-metoprolol, (S)-toliprolol and (S)-alprenolol: Computational rationale for enantioselectivity

Roy, Tamal,Barik, Sunirmal,Kumar, Manish,Kureshy, Rukhsana I.,Ganguly, Bishwajit,Khan, Noor-Ul H.,Abdi, Sayed H. R.,Bajaj, Hari C.

, p. 3899 - 3908 (2015/02/19)

A series of chiral polymeric Co(iii)-salen complexes based on a number of achiral and chiral linkers were synthesized and their catalytic performances were assessed in the asymmetric hydrolytic kinetic resolution of terminal epoxides. The effects of the linker were judiciously studied and it was found that in the case of the chiral BINOL-based polymeric salen complex 1, there was an enrichment in catalyst reactivity and enantioselectivity of the unreacted epoxide, particularly in the case of short as well as long chain aliphatic epoxides. Good isolated yields of the unreacted epoxide (up to 46% compared to 50% theoretical yield) along with high enantioselectivity (up to 99%) were obtained in most cases using catalyst 1. Further studies showed that catalyst 1 could retain its catalytic activity for six cycles under the present reaction conditions without any significant loss in activity or enantioselectivity. To show the practical applicability of the above synthesized catalyst we have synthesised some potent chiral β-blockers in moderate yield and high enantioselectivity using complex 1. The DFT (M06-L/6-31+G??//ONIOM(B3LYP/6-31G?:STO-3G)) calculations revealed that the chiral BINOL linker influences the enantioselectivity achieved with Co(iii)-salen complexes. Further, the transition state calculations show that the R-BINOL linker with the (S,S)-Co(iii)-salen complex is energetically preferred over the corresponding S-BINOL linker with the (S,S)-Co(iii)-salen complex for the HKR of 1,2-epoxyhexane. The role of non-covalent C-H?π interactions and steric effects has been discussed to control the HKR reaction of 1,2-epoxyhexane.

Post a RFQ

Enter 15 to 2000 letters.Word count: 0 letters

Attach files(File Format: Jpeg, Jpg, Gif, Png, PDF, PPT, Zip, Rar,Word or Excel Maximum File Size: 3MB)

1

What can I do for you?
Get Best Price

Get Best Price for 23846-71-1