Welcome to LookChem.com Sign In|Join Free

CAS

  • or

2550-27-8

Post Buying Request

2550-27-8 Suppliers

Recommended suppliersmore

  • Product
  • FOB Price
  • Min.Order
  • Supply Ability
  • Supplier
  • Contact Supplier

2550-27-8 Usage

General Description

3-Methyl-4-phenylbutan-2-one, also referred to as 4-phenyl-3-methyl-2-butanone, is a type of organic chemical compound. Structurally, it belongs to the class of organic compounds known as ketones, marked by a carbonyl group with one specific branch as a methyl group and another as a phenyl group. It can be found in the fragrance industry due to its scent characteristics. As with many chemical substances, it is advisable to handle it with proper care as unnecessary exposure can potentially lead to harmful effects. The safety, toxicity, and environmental impact rely heavily on how it is used and disposed of.

Check Digit Verification of cas no

The CAS Registry Mumber 2550-27-8 includes 7 digits separated into 3 groups by hyphens. The first part of the number,starting from the left, has 4 digits, 2,5,5 and 0 respectively; the second part has 2 digits, 2 and 7 respectively.
Calculate Digit Verification of CAS Registry Number 2550-27:
(6*2)+(5*5)+(4*5)+(3*0)+(2*2)+(1*7)=68
68 % 10 = 8
So 2550-27-8 is a valid CAS Registry Number.
InChI:InChI=1/C11H14O/c1-9(10(2)12)8-11-6-4-3-5-7-11/h3-7,9H,8H2,1-2H3

2550-27-8SDS

SAFETY DATA SHEETS

According to Globally Harmonized System of Classification and Labelling of Chemicals (GHS) - Sixth revised edition

Version: 1.0

Creation Date: Aug 14, 2017

Revision Date: Aug 14, 2017

1.Identification

1.1 GHS Product identifier

Product name 3-Methyl-4-phenylbutan-2-one

1.2 Other means of identification

Product number -
Other names (+/-)-3-methyl-4-phenylbutan-2-one

1.3 Recommended use of the chemical and restrictions on use

Identified uses For industry use only.
Uses advised against no data available

1.4 Supplier's details

1.5 Emergency phone number

Emergency phone number -
Service hours Monday to Friday, 9am-5pm (Standard time zone: UTC/GMT +8 hours).

More Details:2550-27-8 SDS

2550-27-8Relevant articles and documents

Indene Derived Phosphorus-Thioether Ligands for the Ir-Catalyzed Asymmetric Hydrogenation of Olefins with Diverse Substitution Patterns and Different Functional Groups

Margalef, Jèssica,Biosca, Maria,de la Cruz-Sánchez, Pol,Caldentey, Xisco,Rodríguez-Escrich, Carles,Pàmies, Oscar,Pericàs, Miquel A.,Diéguez, Montserrat

supporting information, p. 4561 - 4574 (2021/04/05)

A family of phosphite/phosphinite-thioether ligands have been tested in the Ir-catalyzed asymmetric hydrogenation of a range of olefins (50 substrates in total). The presented ligands are synthesized in three steps from cheap indene and they are air-stable solids. Their modular architecture has been crucial to maximize the catalytic performance for each type of substrate. Improving most Ir-catalysts reported so far, this ligand family presents a broader substrate scope, covering different substitution patterns with different functional groups, ranging from unfunctionalized olefins, through olefins with poorly coordinative groups, to olefins with coordinative functional groups. α,β-Unsaturated acyclic and cyclic esters, ketones and amides werehydrogenated in enantioselectivities ranging from 83 to 99% ee. Enantioselectivities ranging from 91 to 98% ee were also achieved for challenging substrates such as unfunctionalized 1,1′-disubstituted olefins, functionalized tri- and 1,1′-disubstituted vinyl phosphonates, and β-cyclic enamides. The catalytic performance of the Ir-ligand assemblies was maintained when the environmentally benign 1,2-propylene carbonate was used as solvent. (Figure presented.).

Capturing the Monomeric (L)CuH in NHC-Capped Cyclodextrin: Cavity-Controlled Chemoselective Hydrosilylation of α,β-Unsaturated Ketones

Bistri-Aslanoff, Olivia,Derat, Etienne,Leloux, Sébastien,Leyssens, Tom,Ménand, Micka?l,Meijide Suárez, Jorge,Riant, Olivier,Roland, Sylvain,Sollogoub, Matthieu,Xu, Guangcan,Zhang, Pinglu,Zhang, Yongmin

, p. 7591 - 7597 (2020/03/23)

The encapsulation of copper inside a cyclodextrin capped with an N-heterocyclic carbene (ICyD) allowed both to catch the elusive monomeric (L)CuH and a cavity-controlled chemoselective copper-catalyzed hydrosilylation of α,β-unsaturated ketones. Remarkably, (α-ICyD)CuCl promoted the 1,2-addition exclusively, while (β-ICyD)CuCl produced the fully reduced product. The chemoselectivity is controlled by the size of the cavity and weak interactions between the substrate and internal C?H bonds of the cyclodextrin.

Phosphite-thioether/selenoether Ligands from Carbohydrates: An Easily Accessible Ligand Library for the Asymmetric Hydrogenation of Functionalized and Unfunctionalized Olefins

Margalef, Jèssica,Borràs, Carlota,Alegre, Sabina,Alberico, Elisabetta,Pàmies, Oscar,Diéguez, Montserrat

, p. 2142 - 2168 (2019/04/13)

A large family of phosphite-thioether/selenoether ligands has been easily prepared from accessible L-(+)-tartaric acid and D-(+)-mannitol and applied in the M-catalyzed (M=Ir, Rh) asymmetric hydrogenation of a broad number of substrates (46 in total). Its highly modular architecture has been crucial to maximize the catalytic performance. Improving most of the reported approaches, this ligand family presents a broad substrate scope. By selecting the ligand parameters high enantioselectivities (ee's up to 99 %) have therefore been achieved in a broad range of both, functionalized and unfunctionalized substrates. Interestingly, both enantiomers of the hydrogenation products can be usually achieved by changing the ligand parameters.

Post a RFQ

Enter 15 to 2000 letters.Word count: 0 letters

Attach files(File Format: Jpeg, Jpg, Gif, Png, PDF, PPT, Zip, Rar,Word or Excel Maximum File Size: 3MB)

1

What can I do for you?
Get Best Price

Get Best Price for 2550-27-8