2611-02-1Relevant articles and documents
Synthesis of Highly Fluorinated Arene Complexes of [Rh(Chelating Phosphine)]+ Cations, and their use in Synthesis and Catalysis
McKay, Alasdair I.,Barwick-Silk, James,Savage, Max,Willis, Michael C.,Weller, Andrew S.
, p. 2883 - 2889 (2020/02/20)
The synthesis of rhodium complexes with weakly binding highly fluorinated benzene ligands is described: 1,2,3-F3C6H3, 1,2,3,4-F4C6H2 and 1,2,3,4,5-F5C6H are shown to bind with cationic [Rh(Cy2P(CH2)xPCy2)]+ fragments (x=1, 2). Their structures and reactivity with alkenes, and use in catalysis for promoting the Tishchenko reaction of a simple aldehyde, are demonstrated. Key to the synthesis of these complexes is the highly concentrated reaction conditions and use of the [Al{OC(CF3)3}4]? anion.
Metal complex catalysts and method for catalytically reducing carboxylic acids
-
Paragraph 0156; 0165; 0166; 0178-0179, (2020/06/20)
The invention relates to a metal complex catalyst, which contains at least one of metal complexes with a chemical formula comprising a structural unit represented by a formula I. According to the invention, the center metal of the metal complex catalyst is iridium, and the metal complex catalyst is composed of pentamethylcyclopentadienyl, a bitetrahydropyrimidine ligand and proper coordination anions; the metal complex catalyst has activity on a carboxylic acid reduction reaction, and a carboxylic acid compound is reduced into an alcohol compound in the presence of hydrogen; and the method ismild in reaction condition, can be carried out at room temperature, and is good in catalytic performance and high in reduction product yield.
Organoaluminum cations for carbonyl activation
Kannan, Ramkumar,Chambenahalli, Raju,Kumar, Sandeep,Krishna, Athul,Andrews, Alex P.,Jemmis, Eluvathingal D.,Venugopal, Ajay
supporting information, p. 14629 - 14632 (2019/12/11)
In search of stable, yet reactive aluminum Lewis acids, we have isolated an organoaluminum cation, [(Me2NC6H4)2Al(C4H8O)2]+, coordinated with two labile tetrahydrofuran ligands. Its catalytic performance in aldehyde dimerization reveals turn-over frequencies reaching up to 6000 h-1, exceeding that of the reported main group catalysts. The cation is further demonstrated to catalyze hydroelementation of ketones. Mechanistic investigations reveal that aldehyde dimerization and ketone hydrosilylation occur through carbonyl activation.
Pd-Catalyzed Dehydrogenative Oxidation of Alcohols to Functionalized Molecules
Mori, Takamichi,Ishii, Chihiro,Kimura, Masanari
supporting information, p. 1709 - 1717 (2019/09/04)
A dehydrogenative oxidation reaction of primary alcohols to aldehydes catalyzed by a simple Pd/Xantphos catalytic system was developed under an argon or nitrogen atmosphere without oxidizing agents or hydrogen acceptors. The reaction product could be easily changed: under aerobic conditions, esters were obtained in aprotic solvents, whereas the corresponding carboxylic acids were produced in aqueous media. These oxidizing processes were applicable to the efficient synthesis of useful nitrogen-containing heterocyclic compounds such as indole, quinazoline, and benzimidazole via intramolecular versions of this reaction from amino alcohols.
Synthesis, characterization and catalytic performances of benzimidazolin-2-iminato actinide (IV) complexes in the Tishchenko reactions for symmetrical and unsymmetrical esters
Liu, Heng,Khononov, Maxim,Fridman, Natalia,Tamm, Matthias,Eisen, Moris S.
, p. 123 - 137 (2017/10/25)
A new family of benzimdazolin-2-iminato actinide?(IV) complexes [(Bim7-MeDipp/MeN)An(N(SiMe3)2)3] (An = U (3), Th (4)) and [(Bim4-MeDipp/MeN)An(N(SiMe3)2)3] (An = U (5), Th (6)) were synthesized and their solid state structures were established by single-crystal X-ray diffraction analysis. The catalytic performances of complexes 3–6 towards the homo- and cross-coupling of aldehydes (Tishchenko reaction) were studied and the thorium complexes 4 and 6 displayed moderate to high activities for the production of the corresponding symmetric and unsymmetrical esters. Coupling of aldehyde and alcohols, known as the tandem proton-transfer esterification, and the intermolecular coupling reaction between aldehyde and trifluoromethylketones were also investigated by these thorium complexes, indicating a complementary method to obtain unsymmetrical esters selectively. Plausible mechanisms for these reactions are proposed based on stoichiometric studies.
Base-Free and Acceptorless Dehydrogenation of Alcohols Catalyzed by an Iridium Complex Stabilized by a N, N, N-Osmaligand
Alabau, Roberto G.,Esteruelas, Miguel A.,Martínez, Antonio,Oliván, Montserrat,O?ate, Enrique
, p. 2732 - 2740 (2018/09/10)
The preparation of a N,N,N-osmaligand, its coordination to iridium to afford an efficient catalyst precursor, and the catalytic activity of the latter in dehydrogenation reactions of hydrogen carriers based on alcohols are reported. Complex OsH2Cl2(PiPr3)2 (1) reacts with 3-(2-pyridyl)pyrazol to give the osmium(II) complex 2H, which contains an acidic hydrogen atom. Deprotonation of the latter by the bridging methoxy groups of the dimer [Ir(μ-OMe)(n4-COD)]2 (COD = 1,5-cyclooctadiene) leads to Ir(2)( n 4-COD) (3), where osmaligand 2 has a free-nitrogen atom. Iridium complex 3 catalyzes the dehydrogenation of secondary and primary alcohols to ketones and aldehydes or esters, respectively, and the dehydrogenation of diols to lactones. Cyclooctatriene is detected during the catalysis by GC-MS, suggesting that the true catalyst of the reactions is a dihydride IrH2(2)-species with osmaligand 2 acting as N,N,N-pincer. The presence of a phenyl group in the substrates favors the catalytic processes. The dehydrogenative homocoupling of primary alcohols to esters appears to take place via the transitory formation of hemiacetals.
Oxidative esterification of primary alcohols at room temperature under aqueous medium
Reddy, N. Naresh Kumar,Ravi, Chitrakar,Adimurthy, Subbarayappa
, p. 1663 - 1670 (2018/06/15)
Oxidative esterification of aliphatic primary alcohols with bromide and bromate couple in aqueous acidic medium at room temperature is reported with a wide range of substrate scope for both aliphatic and cyclic alcohols and obtained excellent yields of products.
Rhodium-catalyzed synthesis of imines and esters from benzyl alcohols and nitroarenes: Change in catalyst reactivity depending on the presence or absence of the phosphine ligand
Song, Taemoon,Park, Ji Eun,Chung, Young Keun
, p. 4197 - 4203 (2018/04/14)
The [Rh(COD)Cl]2/xantphos/Cs2CO3 system efficiently catalyzes the reductive N-alkylation of aryl nitro compounds with alcohols by a borrowing-hydrogen strategy to afford the corresponding imine products in good to excellent yields. In the absence of xantphos, the [Rh(COD)Cl]2/Cs2CO3 catalytic system behaves as an effective catalyst for the dehydrogenative coupling of alcohols to esters, with nitrobenzene as a hydrogen acceptor. The reactivity of the rhodium catalytic system can be easily manipulated to selectively afford the imine or ester.
Cobalt-Catalyzed Acceptorless Dehydrogenative Coupling of Primary Alcohols to Esters
Paudel, Keshav,Pandey, Bedraj,Xu, Shi,Taylor, Daniela K.,Tyer, David L.,Torres, Claudia Lopez,Gallagher, Sky,Kong, Lin,Ding, Keying
supporting information, p. 4478 - 4481 (2018/08/09)
A novel catalytic system with a tripodal cobalt complex is developed for efficiently converting primary alcohols to esters. KOtBu is found essential to the transformation. A preliminary mechanistic study suggests a plausible reaction route that involves an initial Co-catalyzed dehydrogenation of alcohol to aldehyde, followed by a Tishchenko-type pathway to ester mediated by KOtBu.
Thorium complexes possessing expanded ring N-heterocyclic iminato ligands: Synthesis and applications
Ghatak, Tapas,Drucker, Shani,Fridman, Natalia,Eisen, Moris S.
supporting information, p. 12005 - 12009 (2017/09/25)
Six and seven membered N-heterocyclic iminato ligands (L) are introduced allowing access a new class of Th(iv) complexes of the type Cp?2Th(L)(CH3). These complexes were studied in the Tishchenko reaction. Stoichiometric reactions together with kinetic and thermodynamic studies permit us to propose a plausible mechanism.