Welcome to LookChem.com Sign In|Join Free

CAS

  • or

2897-21-4

Post Buying Request

2897-21-4 Suppliers

Recommended suppliersmore

  • Product
  • FOB Price
  • Min.Order
  • Supply Ability
  • Supplier
  • Contact Supplier

2897-21-4 Usage

General Description

SELENO-DL-CYSTINE, also known as selenocystine, is a chemical compound that consists of two molecules of the amino acid cystine linked by a disulfide bond, with each molecule containing a selenium atom. It is an important source of selenium, an essential trace element with antioxidant properties. SELENO-DL-CYSTINE is believed to have potential therapeutic benefits, including possible anticancer and antiviral properties. It is often used in dietary supplements to provide a source of both cystine and selenium, which are important for maintaining overall health and supporting the immune system. Additionally, selenocystine has been used in research and laboratory settings to study the effects of selenium and its potential applications in medicine.

Check Digit Verification of cas no

The CAS Registry Mumber 2897-21-4 includes 7 digits separated into 3 groups by hyphens. The first part of the number,starting from the left, has 4 digits, 2,8,9 and 7 respectively; the second part has 2 digits, 2 and 1 respectively.
Calculate Digit Verification of CAS Registry Number 2897-21:
(6*2)+(5*8)+(4*9)+(3*7)+(2*2)+(1*1)=114
114 % 10 = 4
So 2897-21-4 is a valid CAS Registry Number.
InChI:InChI=1/C6H12N2O4Se2/c7-3(5(9)10)1-13-14-2-4(8)6(11)12/h3-4H,1-2,7-8H2,(H,9,10)(H,11,12)/t3-,4-/m0/s1

2897-21-4SDS

SAFETY DATA SHEETS

According to Globally Harmonized System of Classification and Labelling of Chemicals (GHS) - Sixth revised edition

Version: 1.0

Creation Date: Aug 13, 2017

Revision Date: Aug 13, 2017

1.Identification

1.1 GHS Product identifier

Product name (R,R)-3,3'-diselenobis-(2-aminopropionic acid)

1.2 Other means of identification

Product number -
Other names SELENO-DL-CYSTINE

1.3 Recommended use of the chemical and restrictions on use

Identified uses For industry use only.
Uses advised against no data available

1.4 Supplier's details

1.5 Emergency phone number

Emergency phone number -
Service hours Monday to Friday, 9am-5pm (Standard time zone: UTC/GMT +8 hours).

More Details:2897-21-4 SDS

2897-21-4Relevant articles and documents

Studies on the reaction between reduced riboflavin and selenocystine

Dereven'kov, Ilia A.,Makarov, Sergei V.,Molodtsov, Pavel A.,Makarova, Anna S.

, p. 146 - 153 (2020/09/21)

Selenocysteine (Sec) is a crucial component of mammalian thioredoxin reductase (TrxR) where it serves as a nucleophile for disulfide bond rupture in thioredoxin (Trx). Generation of the reduced state of Sec in TrxR requires consecutive two electron transfer steps, namely: (i) from NADPH to flavin adenine dinucleotide, (ii) from reduced flavin to the disulfide bond Cys59-S-S-Cys64, and finally (iii) from Cys59 and Cys64 to the selenosulfide bond Cys497-S-Se-Sec498. In this work, we studied the reaction between reduced riboflavin (RibH2) and selenocystine (Sec-Sec), an oxidized form of Sec. The interaction between RibH2 and Sec-Sec proceeded relatively slowly in comparison with its reverse reaction, that is, reduction of riboflavin (Rib) by Sec. The rate constant for the reaction between RibH2 and Sec-Sec was (7.9?±?0.1)?×?10?2?M?1 s?1 (pH 7.0, 25.0°C). The reaction between Rib and Sec proceeded via two steps, namely, a rapid reversible binding of Rib to Sec having a protonated selenol group to form a Sec-Rib complex, followed by nucleophilic attack of Sec-Rib by a second Sec molecule harboring a deprotonated selenol group. The equilibrium constant for the overall reduction process of Rib by Sec is (1.2?±?0.1)?×?106?M?1 (25.0°C). The finding that the interaction of RibH2 with oxidized selenol is reversible with its equilibrium favored toward the reverse reaction provides an additional explanation for the exceptional mechanism of the mammalian Trx/TrxR system involving transient reduction of a disulfide bond.

Selenazolidine: A selenium containing proline surrogate in peptide science

Cordeau,Cantel,Gagne,Lebrun,Martinez,Subra,Enjalbal

supporting information, p. 8101 - 8108 (2016/09/09)

In the search for new peptide ligands containing selenium in their sequences, we investigated l-4-selenazolidine-carboxylic acid (selenazolidine, Sez) as a proline analog with the chalcogen atom in the γ-position of the ring. In contrast to proteinogenic selenocysteine (Sec) and selenomethionine (SeMet), the incorporation within a peptide sequence of such a non-natural amino acid has never been studied. There is thus a great interest in increasing the possibility of selenium insertion within peptides, especially for sequences that do not possess a sulfur containing amino acid (Cys or Met), by offering other selenated residues suitable for peptide synthesis protocols. Herein, we have evaluated selenazolidine in Boc/Bzl and Fmoc/tBu strategies through the synthesis of a model tripeptide, both in solution and on a solid support. Special attention was paid to the stability of the Sez residue in basic conditions. Thus, generic protocols have been optimized to synthesize Sez-containing peptides, through the use of an Fmoc-Xxx-Sez-OH dipeptide unit. As an example, a new analog of the vasopressin receptor-1A antagonist was prepared, in which Pro was replaced with Sez [3-(4-hydroxyphenyl)-propionyl-d-Tyr(Me)-Phe-Gln-Asn-Arg-Sez-Arg-NH2]. Both proline and such pseudo-proline containing peptides exhibited similar pharmacological properties and endopeptidase stabilities indicating that the presence of the selenium atom has minimal functional effects. Taking into account the straightforward handling of Sez as a dipeptide building block in a conventional Fmoc/tBu SPPS strategy, this result suggested a wide range of potential uses of the Sez amino acid in peptide chemistry, for instance as a viable proline surrogate as well as a selenium probe, complementary to Sec and SeMet, for NMR and mass spectrometry analytical purposes.

Preparation method for L-selenocysteine

-

Paragraph 0030; 0031, (2016/12/26)

The invention belongs to the field of chemical synthesis, and concretely relates to a synthetic method for L-selenocysteine. The method comprises the following steps: a, chloridizing L-serine hydrochloride to obtain 3-chloro-L-alanine hydrochloride; b, performing seleno-reaction of 3-chloro-L-alanine hydrochloride prepared by step a under alkaline condition to obtain L-selenocystine; and c, performing reduction reaction of L-selenocystine to obtain L-selenocysteine. The method has simple steps, high yield, low cost, and good application prospect.

Post a RFQ

Enter 15 to 2000 letters.Word count: 0 letters

Attach files(File Format: Jpeg, Jpg, Gif, Png, PDF, PPT, Zip, Rar,Word or Excel Maximum File Size: 3MB)

1

What can I do for you?
Get Best Price

Get Best Price for 2897-21-4