Welcome to LookChem.com Sign In|Join Free

CAS

  • or

29263-67-0

Post Buying Request

29263-67-0 Suppliers

Recommended suppliersmore

  • Product
  • FOB Price
  • Min.Order
  • Supply Ability
  • Supplier
  • Contact Supplier

29263-67-0 Usage

Check Digit Verification of cas no

The CAS Registry Mumber 29263-67-0 includes 8 digits separated into 3 groups by hyphens. The first part of the number,starting from the left, has 5 digits, 2,9,2,6 and 3 respectively; the second part has 2 digits, 6 and 7 respectively.
Calculate Digit Verification of CAS Registry Number 29263-67:
(7*2)+(6*9)+(5*2)+(4*6)+(3*3)+(2*6)+(1*7)=130
130 % 10 = 0
So 29263-67-0 is a valid CAS Registry Number.

29263-67-0SDS

SAFETY DATA SHEETS

According to Globally Harmonized System of Classification and Labelling of Chemicals (GHS) - Sixth revised edition

Version: 1.0

Creation Date: Aug 18, 2017

Revision Date: Aug 18, 2017

1.Identification

1.1 GHS Product identifier

Product name α-(4-methylphenyl)-2-pyridinemethanol

1.2 Other means of identification

Product number -
Other names pyridin-2-yl(p-tolyl)methanol

1.3 Recommended use of the chemical and restrictions on use

Identified uses For industry use only.
Uses advised against no data available

1.4 Supplier's details

1.5 Emergency phone number

Emergency phone number -
Service hours Monday to Friday, 9am-5pm (Standard time zone: UTC/GMT +8 hours).

More Details:29263-67-0 SDS

29263-67-0Relevant articles and documents

Green synthesis method of polyaryl substituted methanol

-

Paragraph 0127-0131; 0147-0151, (2021/04/17)

The invention relates to a green synthesis method of polyaryl substituted methanol, in particular to a method for efficiently synthesizing polyaryl substituted methanol in a polar aprotic solvent under the condition of an oxidizing agent by taking polyaryl substituted methane as a raw material and alkali as an additive. The method provided by the invention is green and environment-friendly, avoids using expensive metal catalysts, and has the advantages of low cost, few reaction steps, short time, high yield and the like.

Targeting the aryl hydrocarbon receptor with a novel set of triarylmethanes

Barigye, Stephen J.,Carpio, Laureano E.,Ferroud, Clotilde,Giner, Rosa M.,Goya-Jorge, Elizabeth,Gozalbes, Rafael,Loones, Nicolas,Rampal, Celine,Sylla-Iyarreta Veitía, Maité

supporting information, (2020/10/02)

The aryl hydrocarbon receptor (AhR) is a chemical sensor upregulating the transcription of responsive genes associated with endocrine homeostasis, oxidative balance and diverse metabolic, immunological and inflammatory processes, which have raised the pharmacological interest on its modulation. Herein, a novel set of 32 unsymmetrical triarylmethane (TAM) class of structures has been synthesized, characterized and their AhR transcriptional activity evaluated using a cell-based assay. Eight of the assayed TAM compounds (14, 15, 18, 19, 21, 22, 25, 28) exhibited AhR agonism but none of them showed antagonist effects. TAMs bearing benzotrifluoride, naphthol or heteroaromatic (indole, quinoline or thiophene) rings seem to be prone to AhR activation unlike phenyl substituted or benzotriazole derivatives. A molecular docking analysis with the AhR ligand binding domain (LBD) showed similarities in the binding mode and in the interactions of the most potent TAM identified 4-(pyridin-2-yl (thiophen-2-yl)methyl)phenol (22) compared to the endogenous AhR agonist 5,11-dihydroindolo[3,2-b]carbazole-12-carbaldehyde (FICZ). Finally, in silico predictions of physicochemical and biopharmaceutical properties for the most potent agonistic compounds were performed and these exhibited acceptable druglikeness and good ADME profiles. To our knowledge, this is the first study assessing the AhR modulatory effects of unsymmetrical TAM class of compounds.

Ligand-Free Iridium-Catalyzed Dehydrogenative ortho C?H Borylation of Benzyl-2-Pyridines at Room Temperature

Yang, Yuhuan,Gao, Qian,Xu, Senmiao

supporting information, p. 858 - 862 (2019/01/04)

A convenient and ligand-free iridium-catalyzed dehydrogenative ortho C?H borylation of benzyl-2-pyridines has been developed. The reaction proceeds smoothly at room temperature using pinacolborane as a borylating reagent in the presence of catalytic amount of [IrOMe(COD)]2. The reaction is compatible with many functional groups, providing a vast array of ortho borylated products in moderate to excellent yields with excellent selectivities. (Figure presented.).

Post a RFQ

Enter 15 to 2000 letters.Word count: 0 letters

Attach files(File Format: Jpeg, Jpg, Gif, Png, PDF, PPT, Zip, Rar,Word or Excel Maximum File Size: 3MB)

1

What can I do for you?
Get Best Price

Get Best Price for 29263-67-0