Welcome to LookChem.com Sign In|Join Free

CAS

  • or

325-13-3

Post Buying Request

325-13-3 Suppliers

Recommended suppliersmore

  • Product
  • FOB Price
  • Min.Order
  • Supply Ability
  • Supplier
  • Contact Supplier

325-13-3 Usage

Chemical Properties

yellow powder

Check Digit Verification of cas no

The CAS Registry Mumber 325-13-3 includes 6 digits separated into 3 groups by hyphens. The first part of the number,starting from the left, has 3 digits, 3,2 and 5 respectively; the second part has 2 digits, 1 and 3 respectively.
Calculate Digit Verification of CAS Registry Number 325-13:
(5*3)+(4*2)+(3*5)+(2*1)+(1*3)=43
43 % 10 = 3
So 325-13-3 is a valid CAS Registry Number.
InChI:InChI=1/C10H6F3N/c11-10(12,13)8-3-4-9-7(6-8)2-1-5-14-9/h1-6H

325-13-3SDS

SAFETY DATA SHEETS

According to Globally Harmonized System of Classification and Labelling of Chemicals (GHS) - Sixth revised edition

Version: 1.0

Creation Date: Aug 17, 2017

Revision Date: Aug 17, 2017

1.Identification

1.1 GHS Product identifier

Product name 6-(Trifluoromethyl)Quinoline

1.2 Other means of identification

Product number -
Other names 6-trifluoromethyl-quinoline

1.3 Recommended use of the chemical and restrictions on use

Identified uses For industry use only.
Uses advised against no data available

1.4 Supplier's details

1.5 Emergency phone number

Emergency phone number -
Service hours Monday to Friday, 9am-5pm (Standard time zone: UTC/GMT +8 hours).

More Details:325-13-3 SDS

325-13-3Relevant articles and documents

Rational Design and Development of Low-Price, Scalable, Shelf-Stable and Broadly Applicable Electrophilic Sulfonium Ylide-Based Trifluoromethylating Reagents

Ge, Hangming,Ling, Yijing,Liu, Yafei,Lu, Long,Shen, Qilong

, p. 1667 - 1682 (2021/05/28)

The development of two highly reactive electrophilic trifluoromethylating reagents (trifluoromethyl)(4-nitrophenyl)bis(carbomethoxy)methylide (1g) and (trifluoromethyl)(3-chlorophenyl)bis(carbomethoxy)methylide (1j) through structure-activity study was described. Under mild conditions, reagent 1g reacted with β-ketoesters and silyl enol ethers to give α-trifluoromethylated-β-ketoesters or α-trifluoromethylated ketones in high yields. In addition, reagent 1g could serve as a trifluoromethyl radical for a variety of trifluoromethylative transformations under visible light irradiation, including radical trifluoromethylation of electron-rich indoles and pyrroles and sodium aryl sulfinates as well as trifluoromethylative difunctionalization with styrene derivatives. On the other hand, as a complimentary, under reductive coupling conditions, reagent 1j reacted with a variety of (hetero)aryl iodides for the formation of trifluoromethylated (hetero)arenes.

TEAD INHIBITORS AND USES THEREOF

-

Paragraph 00465; 00674, (2020/12/11)

The present invention provides compounds, compositions thereof, and methods of using the same.

Nitrogen-coordinated cobalt nanocrystals for oxidative dehydrogenation and hydrogenation of N-heterocycles

Wu, Yue,Chen, Zheng,Cheong, Weng-Chon,Zhang, Chao,Zheng, Lirong,Yan, Wensheng,Yu, Rong,Chen, Chen,Li, Yadong

, p. 5345 - 5352 (2019/05/29)

To endow non-noble metals with the high catalytic activity that is typically exhibited by noble metals is the central yet challenging aim for substituting noble metals. In this regard, by exploiting the coordination effect of nitrogen, we prepared cobalt nanocrystals stabilized by nitrogen-doped graphitized carbon (Co NCs/N-C). The obtained Co NC/N-C catalyst showed extraordinary performances toward both oxidative dehydrogenation of N-heterocycles and its reverse hydrogenation process under extremely mild conditions. A nearly quantitative conversion could be achieved for oxidative dehydrogenation even at room temperature (25 °C), for which the coordination effect of nitrogen is responsible: the interaction of Co-N induces a partial positive charge on the Co surface, thereby promoting the reaction. In contrast, cobalt nanocrystals supported by pristine carbon (Co NCs/C) proved to be inactive for oxidative dehydrogenation, owing to the lack of nitrogen. Moreover, in Co NCs/N-C, the N-doped graphitized carbon formed a protective layer for Co NCs, which preserved the active valence of Co species and prevented the catalyst from leaching. It was found that the catalyst still retained its excellent catalytic activity after five regeneration cycles; in comparison, its cobaltous oxide counterpart (CoOx/N-C) was barely active. As for the mechanism, electron paramagnetic resonance (EPR) analysis revealed the formation of superoxide anion radicals during the dehydrogenation process. Interestingly, the pressure of feed hydrogen had little effect on the hydrogenation process. Our Co NC/N-C catalyst is capable of activating molecular oxygen and hydrogen as effectively as noble metals; the coordination effect of nitrogen and the protection by the carbon layer in combination confer tremendous potential on the Co NCs/N-C for substituting noble-metal-based catalysts and soluble catalysts for homogeneous reactions.

Post a RFQ

Enter 15 to 2000 letters.Word count: 0 letters

Attach files(File Format: Jpeg, Jpg, Gif, Png, PDF, PPT, Zip, Rar,Word or Excel Maximum File Size: 3MB)

1

What can I do for you?
Get Best Price

Get Best Price for 325-13-3