33288-81-2Relevant articles and documents
One-Pot Anodic Conversion of Symmetrical Bisamides of Ethylene Diamine to Unsymmetrical gem-Bisamides of Methylene Diamine
Golub, Tatiana,Dou, Gui-Yuan,Zeng, Cheng-Chu,Becker, James Y.
, p. 7961 - 7964 (2019)
Symmetrical bisamides of ethylene diamine of type ArCONHCH2CH2NHCOAr undergo anodic C-C bond cleavage in acetonitrile-LiClO4 under controlled-potential electrolysis. The electrogenerated carbocation intermediates react with the solvent acetonitrile to afford unsymmetrical gem-bisamides of type ArCONHCH2NHCOMe in a one-pot reaction. The yields of the latter products are moderate (up to 60%). Other minor products involve two symmetrical gem-bisamides of type ArCONHCH2NHCOAr and MeCONHCH2NHCOMe and fragmentation products (e.g., ArCONHCHO, ArCONH2, and ArCN).
Synthesis, characterization, in vitro biological and molecular docking evaluation of N,N'-(ethane-1,2-diyl)bis(benzamides)
Aziz, Hamid,Saeed, Aamer,Jabeen, Farukh,Ullah, Nazif,Rehman, Ashfaq Ur
, p. 2425 - 2436 (2021/03/03)
The present research describes the synthesis, characterization, in vitro biological and docking evaluation of N,N'-(ethane-1,2-diyl)bis(benzamides) (3a-3j). Consequently, in in vitro hRBCs hemolysis assay, only the bis-amide (3d) induced 52.4% hemolysis at higher concentration (1000?μg/mL) that decreased drastically with concentration (250?μg/mL) to 27.9% (CC50 = 400.41). Similarly, the tested bis-amide (3j) was found to be the least toxic with 7.8% hemolysis at higher concentration (1000?μg/mL) that gradually decreases to 6.1% (CC50 = 19,347.83) at lower concentration (250?μg/mL). Accordingly, the tested bis-amides were found to be highly biocompatible against hRBCs at higher concentrations with much higher CC50 values (> 1000?μg/mL). The biocompatible bis-amides (3a-3j) were subjected to in vitro DNA ladder assay to analyze their apoptotic potential. The results obtained suggest the tested bis-amides (3a-3j) are highly degradative toward DNA causing the appearance of more than one bands or complete degradation of DNA except (3a), (3c), (3i) and (3?g). Moreover, the synthesized bis-amides (3a-3j) were tested in in vitro antileishmanial assay to unveil their leishmaniacidal potential. The results obtained clearly indicated that some of the tested bis-amides displayed good dose dependent response. The tested bis-amides were highly active at higher concentration (1000?μg/mL) against the leishmanial promastigotes and their % inhibitory potential decreased drastically with concentration (250?μg/mL). Consequently, at higher concentration (1000?μg/mL), the bis-amide (3f) caused 85% inhibition and was ranked as the most effective leishmaniacidal bis-amides followed by the bis-amide (3?g) with 73.54% inhibition of leishmanial promastigotes. However, in terms of their IC50 values, the best leishmaniacidal potential was displayed by the bis-amide (3f) followed by (3b), (3j) and (3?g) with IC50 values increasing in the order of 633.16, 680.22, 680.22 and 712.93?μg/mL, respectively. Molecular docking studies revealed that bis-amides having electron-donating groups showed good binding potential against antileishmanial target. Graphic abstract: [Figure not available: see fulltext.].
PRODRUGS FOR NITROREDUCTASE BASED CANCER THERAPY- 2: Novel amide/Ntr combinations targeting PC3 cancer cells
Güng?r, Tu?ba,?nder, Ferah C?mert,Tokay, Esra,Gülhan, ünzile Güven,Hac?o?lu, Nelin,Tok, Tu?ba Ta?k?n,?elik, Ayhan,K??kar, Feray,Ay, Mehmet
, p. 383 - 400 (2019/04/01)
The use of nitroreductases (NTR) that catalyze the reduction of nitro compounds by using NAD(P)H in GDEPT (Gene-directed enzyme prodrug therapy) studies which minimize toxicity at healthy cells and increases concentration of drugs at cancer cells is remarkable. Discovery of new prodrug/NTR combinations is necessary to be an alternative to known prodrug candidates such as CB1954, SN23862, PR-104A. For this aim, nitro containing aromatic amides (A1-A23) were designed, synthesized, performed in silico ADMET and molecular docking techniques in this study. Prodrug candidates were studied on reduction potentials with Ssap-NtrB by HPLC system. Also, cyototoxic properties and prodrug ability of these amides were investigated using different cancer cell lines such as Hep3B and PC3. As a result of theoretical and biological studies, combinations of A5, A6 and A20 with Ssap-NtrB can be suggested as potential prodrugs/enzyme combinations at NTR based cancer therapy compared with CB1954/NfsB.