Welcome to LookChem.com Sign In|Join Free

CAS

  • or
N-hydroxy-4-methylbenzenecarboximidoyl chloride is a chemical with a specific purpose. Lookchem provides you with multiple data and supplier information of this chemical.

36288-37-6

Post Buying Request

36288-37-6 Suppliers

Recommended suppliersmore

  • Product
  • FOB Price
  • Min.Order
  • Supply Ability
  • Supplier
  • Contact Supplier

36288-37-6 Usage

Check Digit Verification of cas no

The CAS Registry Mumber 36288-37-6 includes 8 digits separated into 3 groups by hyphens. The first part of the number,starting from the left, has 5 digits, 3,6,2,8 and 8 respectively; the second part has 2 digits, 3 and 7 respectively.
Calculate Digit Verification of CAS Registry Number 36288-37:
(7*3)+(6*6)+(5*2)+(4*8)+(3*8)+(2*3)+(1*7)=136
136 % 10 = 6
So 36288-37-6 is a valid CAS Registry Number.

36288-37-6SDS

SAFETY DATA SHEETS

According to Globally Harmonized System of Classification and Labelling of Chemicals (GHS) - Sixth revised edition

Version: 1.0

Creation Date: Aug 15, 2017

Revision Date: Aug 15, 2017

1.Identification

1.1 GHS Product identifier

Product name N-hydroxy-4-methyl-benzenecarboximidoyl chloride

1.2 Other means of identification

Product number -
Other names 4-methylbenzhydroximic acid chloride

1.3 Recommended use of the chemical and restrictions on use

Identified uses For industry use only.
Uses advised against no data available

1.4 Supplier's details

1.5 Emergency phone number

Emergency phone number -
Service hours Monday to Friday, 9am-5pm (Standard time zone: UTC/GMT +8 hours).

More Details:36288-37-6 SDS

36288-37-6Relevant articles and documents

Synthesis of 4-(4-ethyl-phenyl)-3-(4-methyl-phenyl)-1,2,4-oxadiazol-5(4H)-one and 4-(4-ethyl-phenyl)-3-(4-methyl-phenyl)-1,2,4-oxadiazole-5(4H)-thione and solvent effects on their infrared spectra in organic solvents

Kara, Yesim S.,ünsal, Mustafa,Tekin, Nalan,E?me, Asl?

, (2021)

In the present study novel 4-(4-ethyl-phenyl)-3-(4-methyl-phenyl)-1,2,4-oxadiazol-5(4H)-one (compound (4)) and 4-(4-ethyl-phenyl)-3-(4-methyl-phenyl)-1,2,4-oxadiazole-5(4H)-thione (compound (5)) were synthesized. These oxadiazole ring derivatives were cha

Design and synthesis of sinomenine isoxazole derivatives via 1,3-dipolar cycloaddition reaction

Pan, Hongmei,Lu, Tong,Wu, Xuedan,Gu, Chengwen,Tao, Naili,Zhang, Biao,Wang, Ao,Chen, Guangmei,Zhang, Kehua,Cheng, Jie,Jin, Jie

, p. 2360 - 2364 (2019/11/11)

A novel structure of sinomenine isoxazole derivatives is synthesised from sinomenine hydrochloride and aromatic aldehydes and requires six steps. 19 target compounds have been obtained in good yields. The sinomenine hydrochloride transforms to 4-alkynyl sinomenine, which is a key intermediate product to synthesise the target sinomenine isoxazole compounds, after a neutralisation reaction with ammonia and substitution reaction with 3-chloropropyne. Another key intermediate product is 1,3-dipole, which can be obtained from aromatic aldehyde. After treatment with hydroxylamine hydrochloride and then sodium carbonate solution, aromatic aldehyde is converted to aldehyde oxime, which reacts with N-chlorosuccinimide (NCS) to afford aryl hydroximino chloride. 1,3-Dipole is eventually formed in situ while triethylamine (TEA) in DMF is added dropwise. Then 4-alkynyl sinomenine is added to provide the sinomenine isoxazole derivative via 1,3-dipolar cycloaddition reaction as the key step. All the target compounds are characterised by melting point, 1H NMR, 13C NMR, HRMS and FT-IR spectroscopy.

Design, synthesis, in vitro and in silico evaluation of new 3-phenyl-4,5-dihydroisoxazole-5-carboxamides active against drug-resistant mycobacterium tuberculosis

Gaikwad, Nikhil Baliram,Afroz, Pathan,Ahmad, Mohammad Naiyaz,Kaul, Grace,Shukla, Manjulika,Nanduri, Srinivas,Dasgupta, Arunava,Chopra, Sidharth,Yaddanapudi, Venkata Madhavi

, (2020/11/24)

A new series of 3-phenyl-4,5-dihydroisoxazole-5-carboxamides were designed, synthesized, and evaluated for their potency against Mtb H37Rv. Designed molecules were synthesized by one-pot cycloaddition reaction in good to excellent yields. Anti-Tubercular evaluation of all synthesized derivatives identified 6k to be highly potent (MIC 1 μg/mL) against Mtb and drug-resistant strains. All potent derivatives were found to be non-toxic when tested against Vero cells. Also, in silico studies were employed to explore the binding patterns of designed compounds to target Mycobacterial membrane protein Large-3. All derivatives exhibited excellent binding patterns with the receptor. The excellent in silico Absorption, Distribution, Metabolism, and Excretion properties and druggability parameters positions these molecules as promising lead candidates for the future development of new drugs to treat drug-resistant Tuberculosis.

Ru-Catalyzed [3 + 2] Cycloaddition of Nitrile Oxides and Electron-Rich Alkynes with Reversed Regioselectivity

Feng, Qiang,Huang, Hai,Sun, Jianwei

, p. 2431 - 2436 (2021/05/05)

Polarity reversal ("umpolung") of a functional group can override its inherent reactivity and lead to distinct bond-forming modes. Herein we describe a rarely studied cycloaddition between nitrile oxides and electron-rich alkynes with reversed regioselect

Dibenzazepine-linked isoxazoles: New and potent class of α-glucosidase inhibitors

Umm-E-Farwa,Ullah, Saeed,Khan, Maria Aqeel,Zafar, Humaira,Atia-tul-Wahab,Younus, Munisaa,Choudhary, M. Iqbal,Basha, Fatima Z.

, (2021/05/10)

α-Glucosidase inhibition is a valid approach for controlling hyperglycemia in diabetes. In the current study, new molecules as a hybrid of isoxazole and dibenzazepine scaffolds were designed, based on their literature as antidiabetic agents. For this, a series of dibenzazepine-linked isoxazoles (33–54) was prepared using Nitrile oxide-Alkyne cycloaddition (NOAC) reaction, and evaluated for their α-glucosidase inhibitory activities to explore new hits for treatment of diabetes. Most of the compounds showed potent inhibitory potency against α-glucosidase (EC 3.2.1.20) enzyme (IC50 = 35.62 ± 1.48 to 333.30 ± 1.67 μM) using acarbose as a reference drug (IC50 = 875.75 ± 2.08 μM). Structure-activity relationship, kinetics and molecular docking studies of active isoxazoles were also determined to study enzyme-inhibitor interactions. Compounds 33, 40, 41, 46, 48–50, and 54 showed binding interactions with critical amino acid residues of α-glucosidase enzyme, such as Lys156, Ser157, Asp242, and Gln353.

Construction of spiro-1,2,4-oxadiazoline-fused matrine-type alkaloids as pesticidal agents

Lv, Min,Ma, Qianjun,Xu, Hui,Zhang, Shaoyong

, (2021/09/16)

In order to increase the agricultural properties of matrine, a series of novel matrine-type alkaloids containing spiro-1,2,4-oxadiazoline fragment at the C-15 position were prepared. Eight target molecules were elucidated by X-ray single-crystal diffracti

Triazole alcohol derivative as well as preparation method and application thereof

-

, (2020/03/11)

The invention relates to a triazole alcohol derivative as well as a preparation method and application thereof. The chemical structure of the triazole alcohol derivative is shown as a formula I, R1 represents a benzene ring or a substituted benzene ring, and substituent groups of the substituted benzene ring can be located at all positions of the benzene ring, can be mono-substituted or multi-substituted, and can be selected from a) halogen which is F and Cl; b) an electron withdrawing group which is cyano or trifluoromethyl; c ) a lower alkyl of 1-4 carbon atoms or a halogen substituted loweralkyl; and d) lower alkoxy of 1-4 carbon atoms or halogen substituted lower alkoxy. The compound of the invention has strong antifungal activity, has the advantages of low toxicity, wide antibacterial spectrum and the like, and can be used for preparing antifungal drugs.

Design, synthesis, and in vitro evaluation of novel triazole analogues featuring isoxazole moieties as antifungal agents

Chai, Xiaoyun,Ding, Zichao,Hao, Yumeng,Jiang, Yuanying,Jin, Yongsheng,Ni, Tingjunhong,Wang, Ruilian,Wang, Ruina,Wang, Ting,Xie, Fei,Yu, Shichong,Zhang, Dazhi

, (2020/06/17)

In order to develop novel antifungal agents, based on our previous work, a series of (2R,3R)-3-((3-substitutied-isoxazol-5-yl)methoxy)-2-(2,4-difluorophenyl)-1-(1H-1,2,4-triazol-1-yl) butan-2-ol (a1-a26) were designed and synthesized. All of the compounds exhibited good in vitro antifungal activities against eight human pathogenic fungi. Among them, compound a6 showed excellent inhibitory activity against Candida albicans and Candida parasilosis with MIC80 values of 0.0313 μg/mL. In addition, compounds a6, a9, a12, a13 and a14 exhibited moderate inhibitory activities against fluconazole-resistant isolates with MIC80 values ranging from 8 μg/mL to 16 μg/mL. Furthermore, compounds a6, a12 and a23 exhibited low inhibition profiles for CYP3A4. Clear SARs were analyzed, and the molecular docking experiment was carried out to further investigate the relationship between a6 and the target enzyme CYP51.

Identification of morpholine based hydroxylamine analogues: Selective inhibitors of MARK4/Par-1d causing cancer cell death through apoptosis

Avecilla, Fernando,Azam, Amir,Gaur, Aysha,Hassan, Md. Imtaiyaz,Khan, Nashrah Sharif,Khan, Parvez,Peerzada, Mudasir Nabi

, p. 16626 - 16637 (2020/10/14)

Microtubule affinity-regulating kinase 4 (MARK4) is a serine/threonine kinase involved in the phosphorylation of MAP proteins that regulates microtubule dynamics and abets tumor progression by participating in oncogenic signaling pathways. It is overexpressed in multiple human malignancies and no drug is available for this potential therapeutic target at present. Therefore, using the structure based drug design strategy, a library of hydroxylamine derivatives of morpholine were designed and synthesized as small molecule inhibitors of MARK4. Compound 32 having the CF3 group at the ortho position of the phenyl ring tethered with the >CNOH core and the hinge binder morpholine component was found to be a potent and selective inhibitor of MARK4 over thirty other serine-threonine kinases. Study of cell viability and compound induced morphological changes in MCF-7 cancer cells discovered that molecule 32 caused death of cancerous cells through the mechanism of apoptosis. Compound 32 may be transported and delivered to the target site through the blood stream, and has promising antioxidant potential. Such bio-active molecules could serve as optimized lead candidates in drug discovery for cancer treatment through MARK4 inhibition.

Discovery of Natural Product-Based Fungicides (II): Semisynthesis and Biological Activity of Sarisan Attached 3-Phenylisoxazolines as Antifungal Agents

Liu, Zhiyan,Cao, Jiangping,Yan, Xiaoting,Cheng, Wanqing,Wang, Xiaoguang,Yang, Ruige,Guo, Yong

, (2020/12/09)

Many phytopathogenic fungi cause severe damage to crop yields. In continuation of our research aimed at the discovery and development of natural products-based fungicides, a series of thirty-one sarisan attached 3-phenylisoxazolines were synthesized and evaluated for their antifungal activities against five phytopathogenic fungi (B. cinerea, C. lagenarium, A. solani, F. solani, and F. graminearum). Among all title sarisan derivatives, compounds IV2, IV14 and IV23 showed potent antifungal activity against some phytopathogenic fungi. In particular, compound IV2 exhibited a broad-spectrum and more potent antifungal activity against A. solani, F. solani, and F. graminearum than the commercial fungicide Hymexazol. In addition, compounds IV2, IV14 and IV23 also displayed relative low toxicity on normal NRK-52E cells. This work will give some insights into the development of sarisan derivatives as new fungicide candidates in plant protection.

Post a RFQ

Enter 15 to 2000 letters.Word count: 0 letters

Attach files(File Format: Jpeg, Jpg, Gif, Png, PDF, PPT, Zip, Rar,Word or Excel Maximum File Size: 3MB)

1

What can I do for you?
Get Best Price

Get Best Price for 36288-37-6