Welcome to LookChem.com Sign In|Join Free

CAS

  • or

3235-02-7

Post Buying Request

3235-02-7 Suppliers

Recommended suppliersmore

  • Product
  • FOB Price
  • Min.Order
  • Supply Ability
  • Supplier
  • Contact Supplier

3235-02-7 Usage

General Description

4-Methylbenzaldehyde oxime is a chemical compound with the molecular formula C8H9NO and a molecular weight of 135.16 g/mol. It is a pale yellow solid with a melting point of 60-62°C. 4-Methylbenzaldehyde oxime is used as a reagent in organic synthesis, particularly in the preparation of benzylidenepiperidone derivatives. It also has applications in the production of pharmaceuticals, agrochemicals, and other fine chemicals. Additionally, this compound has been investigated for its potential biological activities, including its antimicrobial and antioxidant properties. It is important to handle this chemical with care, as it may cause skin and eye irritation upon contact and should be used in a well-ventilated area.

Check Digit Verification of cas no

The CAS Registry Mumber 3235-02-7 includes 7 digits separated into 3 groups by hyphens. The first part of the number,starting from the left, has 4 digits, 3,2,3 and 5 respectively; the second part has 2 digits, 0 and 2 respectively.
Calculate Digit Verification of CAS Registry Number 3235-02:
(6*3)+(5*2)+(4*3)+(3*5)+(2*0)+(1*2)=57
57 % 10 = 7
So 3235-02-7 is a valid CAS Registry Number.

3235-02-7SDS

SAFETY DATA SHEETS

According to Globally Harmonized System of Classification and Labelling of Chemicals (GHS) - Sixth revised edition

Version: 1.0

Creation Date: Aug 17, 2017

Revision Date: Aug 17, 2017

1.Identification

1.1 GHS Product identifier

Product name (NE)-N-[(4-methylphenyl)methylidene]hydroxylamine

1.2 Other means of identification

Product number -
Other names p-Tolualdehyde,oxime

1.3 Recommended use of the chemical and restrictions on use

Identified uses For industry use only.
Uses advised against no data available

1.4 Supplier's details

1.5 Emergency phone number

Emergency phone number -
Service hours Monday to Friday, 9am-5pm (Standard time zone: UTC/GMT +8 hours).

More Details:3235-02-7 SDS

3235-02-7Relevant articles and documents

A catalytic regioselective procedure for the synthesis of aryl oximes in the presence of palladium nanoparticles

Demir, Emine,Goksu, Haydar,Orhan, Ersin

, (2022/01/20)

The synthesis of aryl oximes from aryl aldehyde derivatives was carried out using hydroxylamine hydrochloride and aluminum oxy hydroxide-supported palladium (Pd/AlO(OH) nanoparticles. The procedure is revealed via the regioselective synthesis of oxime der

On the mixed oxides-supported niobium catalyst towards benzylamine oxidation

Granato, álisson Silva,de Carvalho, Gustavo S. Gon?alves,Fonseca, Carla G.,Adrio, Javier,Leit?o, Alexandre A.,Amarante, Giovanni Wilson

, p. 118 - 125 (2020/09/11)

A series of mixed oxides-supported niobium-based catalysts has been synthesized and applied towards oxidation reactions of benzylamine derivatives. Under the optimized reaction conditions, the selectivity to oxime enhanced, leading to the main product with up to 72 %. Moreover, even α-substituted benzylamines were well tolerated and led to oximes in good isolated yields. It is important to mention; four equivalents of the harmless and inexpensive hydrogen peroxide were employed as oxidizing agent. Mechanism hypothesis suggested that the reaction proceed to selective benzylamine oxidation into nitroso intermediate, following by formation of the corresponding oxime tautomer mediated by an unstable water produced by NbOx supported catalyst. This consists the first mixed oxides-supported niobium-based catalyst for selective oxidation of benzylamines to oximes.

Design, synthesis and biological evaluation of novel indanone containing spiroisoxazoline derivatives with selective COX-2 inhibition as anticancer agents

Abolhasani, Hoda,Zarghi, Afshin,Komeili Movahhed, Tahereh,Abolhasani, Ahmad,Daraei, Bahram,Dastmalchi, Siavoush

, (2021/01/25)

Objective: A new family of 3′-(Mono, di or tri-substituted phenyl)-4′-(4-(methylsulfonyl) phenyl) spiroisoxazoline derivatives containing indanone spirobridge was designed, synthesized, and evaluated for their selective COX-2 inhibitory potency and cytotoxicity on different cell lines. Methods: A synthetic reaction based on 1,3-dipolar cycloaddition mechanism was applied for the regiospecific formation of various spiroisoxazolines. The activity of the newly synthesized compounds was determined using in vitro cyclooxygenase inhibition assay. The toxicity of the compounds was evaluated by MTT assay. In addition, induction of apoptosis, and expression levels of Bax, Bcl-2 and caspase-3 mRNA in MCF-7 cells were evaluated following exposure to compound 9f. The docking calculations and molecular dynamics simulation were performed to study the most probable modes of interactions of compound 9f upon binding to COX-2 enzyme. Results: The docking results showed that the synthesized compounds were able to form hydrogen bonds with COX-2 involving methyl sulfonyl, spiroisoxazoline, meta-methoxy and fluoro functional groups. Spiroisoxazoline derivatives containing methoxy group at the C-3′ phenyl ring meta position (9f and 9g) showed superior selectivity with higher potency of inhibiting COX-2 enzyme. Furthermore, compound 9f, which possesses 3,4-dimethoxyphenyl on C-3′ carbon atom of isoxazoline ring, exhibited the highest COX-2 inhibitory activity, and also displayed the most potent cytotoxicity on MCF-7 cells with an IC50 value of 0.03 ± 0.01 μM, comparable with that of doxorubicin (IC50 of 0.062 ± 0.012 μM). The results indicated that compound 9f could promote apoptosis. Also, compared to the control group, the mRNA expression of Bax and caspase-3 significantly increased, while that of Bcl-2 significantly decreased upon exposure to compound 9f which may propose the activation of mitochondrial-associated pathway as the mechanism of observed apoptosis. Conclusion: In vitro biological evaluations accompanied with in silico studies revealed that indanone tricyclic spiroisoxazoline derivatives are good candidates for the development of new anti-inflammatory and anticancer (colorectal and breast) agents.

Post a RFQ

Enter 15 to 2000 letters.Word count: 0 letters

Attach files(File Format: Jpeg, Jpg, Gif, Png, PDF, PPT, Zip, Rar,Word or Excel Maximum File Size: 3MB)

1

What can I do for you?
Get Best Price

Get Best Price for 3235-02-7