Welcome to LookChem.com Sign In|Join Free

CAS

  • or

3717-21-3

Post Buying Request

3717-21-3 Suppliers

Recommended suppliersmore

  • Product
  • FOB Price
  • Min.Order
  • Supply Ability
  • Supplier
  • Contact Supplier

3717-21-3 Usage

General Description

(NZ)-N-[(4-methoxyphenyl)methylidene]hydroxylamine, also known as (NZ)-N-(4-methoxybenzylidene)hydroxylamine, is a chemical compound with the molecular formula C8H10NO2. This organic compound is a derivative of hydroxylamine and features a substituted phenyl group. It can be used as a reagent in organic syntheses and has potential applications in pharmaceutical and agrochemical industries. The compound has not been extensively studied in depth, so its specific properties and potential uses are not fully characterized. However, it has the potential to be a valuable tool in various chemical and pharmaceutical applications.

Check Digit Verification of cas no

The CAS Registry Mumber 3717-21-3 includes 7 digits separated into 3 groups by hyphens. The first part of the number,starting from the left, has 4 digits, 3,7,1 and 7 respectively; the second part has 2 digits, 2 and 1 respectively.
Calculate Digit Verification of CAS Registry Number 3717-21:
(6*3)+(5*7)+(4*1)+(3*7)+(2*2)+(1*1)=83
83 % 10 = 3
So 3717-21-3 is a valid CAS Registry Number.

3717-21-3SDS

SAFETY DATA SHEETS

According to Globally Harmonized System of Classification and Labelling of Chemicals (GHS) - Sixth revised edition

Version: 1.0

Creation Date: Aug 18, 2017

Revision Date: Aug 18, 2017

1.Identification

1.1 GHS Product identifier

Product name p-Methoxy-syn-benzaldoxime

1.2 Other means of identification

Product number -
Other names 4-methoxybenzaldoxime

1.3 Recommended use of the chemical and restrictions on use

Identified uses For industry use only.
Uses advised against no data available

1.4 Supplier's details

1.5 Emergency phone number

Emergency phone number -
Service hours Monday to Friday, 9am-5pm (Standard time zone: UTC/GMT +8 hours).

More Details:3717-21-3 SDS

3717-21-3Relevant articles and documents

On the mixed oxides-supported niobium catalyst towards benzylamine oxidation

Granato, álisson Silva,de Carvalho, Gustavo S. Gon?alves,Fonseca, Carla G.,Adrio, Javier,Leit?o, Alexandre A.,Amarante, Giovanni Wilson

, p. 118 - 125 (2020/09/11)

A series of mixed oxides-supported niobium-based catalysts has been synthesized and applied towards oxidation reactions of benzylamine derivatives. Under the optimized reaction conditions, the selectivity to oxime enhanced, leading to the main product with up to 72 %. Moreover, even α-substituted benzylamines were well tolerated and led to oximes in good isolated yields. It is important to mention; four equivalents of the harmless and inexpensive hydrogen peroxide were employed as oxidizing agent. Mechanism hypothesis suggested that the reaction proceed to selective benzylamine oxidation into nitroso intermediate, following by formation of the corresponding oxime tautomer mediated by an unstable water produced by NbOx supported catalyst. This consists the first mixed oxides-supported niobium-based catalyst for selective oxidation of benzylamines to oximes.

1,3-dipolar cycloaddition reactions of the compound obtaining from cyclopentadiene-PTAD and biological activities of adducts formed selectively

Bayrak, Cetin,Menzek, Abdullah,Taskin-Tok, Tugba,Taslimi, Parham,Yavari, Mirali Akbar

, (2022/01/04)

After known adduct (4) was synthesized by cycloaddition reaction of cyclopentadiene with 4-phenyl-1,2,4-triazoline-3,5-dione, seven new isoxazoline derivatives were synthesized from reactions of 4 with corresponding oximes prepared from benzaldehyde derivatives in the existence of the aqueous NaOCl in CH2Cl2 at 0°C—RT via nitrile oxides. Four new pyrazoline derivatives were also synthesized from reactions of 4 with corresponding prepared reagents via nitrile imines. Selectively, each of all isoxazole and pyrazoline derivatives was synthesized by 1,3-dipolar cycloaddition reactions of compound 4 with the corresponding reagents. Based on the results of their biological activity analyses, Ki values for acetylcholinesterase (AChE), butyrylcholinesterase (BChE), and alpha-glucosidase (α-Gly) enzymes were obtained in this range 32.15 ± 5.73–107.44 ± 19.52 22.57 ± 4.30–186.07 ± 23.51, and 69.08 ± 8.54–528.07 ± 38.46 nM, respectively. Besides that, these compounds were subjected to molecular docking to describe the interaction against AChE, BChE, and α-Gly enzymes in which important interactions were visualized and evaluated with residues of the binding region in each target enzyme.

Design, synthesis and biological evaluation of novel indanone containing spiroisoxazoline derivatives with selective COX-2 inhibition as anticancer agents

Abolhasani, Hoda,Zarghi, Afshin,Komeili Movahhed, Tahereh,Abolhasani, Ahmad,Daraei, Bahram,Dastmalchi, Siavoush

, (2021/01/25)

Objective: A new family of 3′-(Mono, di or tri-substituted phenyl)-4′-(4-(methylsulfonyl) phenyl) spiroisoxazoline derivatives containing indanone spirobridge was designed, synthesized, and evaluated for their selective COX-2 inhibitory potency and cytotoxicity on different cell lines. Methods: A synthetic reaction based on 1,3-dipolar cycloaddition mechanism was applied for the regiospecific formation of various spiroisoxazolines. The activity of the newly synthesized compounds was determined using in vitro cyclooxygenase inhibition assay. The toxicity of the compounds was evaluated by MTT assay. In addition, induction of apoptosis, and expression levels of Bax, Bcl-2 and caspase-3 mRNA in MCF-7 cells were evaluated following exposure to compound 9f. The docking calculations and molecular dynamics simulation were performed to study the most probable modes of interactions of compound 9f upon binding to COX-2 enzyme. Results: The docking results showed that the synthesized compounds were able to form hydrogen bonds with COX-2 involving methyl sulfonyl, spiroisoxazoline, meta-methoxy and fluoro functional groups. Spiroisoxazoline derivatives containing methoxy group at the C-3′ phenyl ring meta position (9f and 9g) showed superior selectivity with higher potency of inhibiting COX-2 enzyme. Furthermore, compound 9f, which possesses 3,4-dimethoxyphenyl on C-3′ carbon atom of isoxazoline ring, exhibited the highest COX-2 inhibitory activity, and also displayed the most potent cytotoxicity on MCF-7 cells with an IC50 value of 0.03 ± 0.01 μM, comparable with that of doxorubicin (IC50 of 0.062 ± 0.012 μM). The results indicated that compound 9f could promote apoptosis. Also, compared to the control group, the mRNA expression of Bax and caspase-3 significantly increased, while that of Bcl-2 significantly decreased upon exposure to compound 9f which may propose the activation of mitochondrial-associated pathway as the mechanism of observed apoptosis. Conclusion: In vitro biological evaluations accompanied with in silico studies revealed that indanone tricyclic spiroisoxazoline derivatives are good candidates for the development of new anti-inflammatory and anticancer (colorectal and breast) agents.

Post a RFQ

Enter 15 to 2000 letters.Word count: 0 letters

Attach files(File Format: Jpeg, Jpg, Gif, Png, PDF, PPT, Zip, Rar,Word or Excel Maximum File Size: 3MB)

1

What can I do for you?
Get Best Price

Get Best Price for 3717-21-3