Welcome to LookChem.com Sign In|Join Free

CAS

  • or
1,2-Cyclohexanediol, 1-methyl-4-(1-methylethenyl)-, (1R,2R,4R)- is a chemical with a specific purpose. Lookchem provides you with multiple data and supplier information of this chemical.

39904-09-1 Suppliers

Post Buying Request

Recommended suppliersmore

  • Product
  • FOB Price
  • Min.Order
  • Supply Ability
  • Supplier
  • Contact Supplier
  • 39904-09-1 Structure
  • Basic information

    1. Product Name: 1,2-Cyclohexanediol, 1-methyl-4-(1-methylethenyl)-, (1R,2R,4R)-
    2. Synonyms:
    3. CAS NO:39904-09-1
    4. Molecular Formula: C10H18O2
    5. Molecular Weight: 170.252
    6. EINECS: N/A
    7. Product Categories: N/A
    8. Mol File: 39904-09-1.mol
  • Chemical Properties

    1. Melting Point: N/A
    2. Boiling Point: N/A
    3. Flash Point: N/A
    4. Appearance: N/A
    5. Density: N/A
    6. Refractive Index: N/A
    7. Storage Temp.: N/A
    8. Solubility: N/A
    9. CAS DataBase Reference: 1,2-Cyclohexanediol, 1-methyl-4-(1-methylethenyl)-, (1R,2R,4R)-(CAS DataBase Reference)
    10. NIST Chemistry Reference: 1,2-Cyclohexanediol, 1-methyl-4-(1-methylethenyl)-, (1R,2R,4R)-(39904-09-1)
    11. EPA Substance Registry System: 1,2-Cyclohexanediol, 1-methyl-4-(1-methylethenyl)-, (1R,2R,4R)-(39904-09-1)
  • Safety Data

    1. Hazard Codes: N/A
    2. Statements: N/A
    3. Safety Statements: N/A
    4. WGK Germany:
    5. RTECS:
    6. HazardClass: N/A
    7. PackingGroup: N/A
    8. Hazardous Substances Data: 39904-09-1(Hazardous Substances Data)

39904-09-1 Usage

Check Digit Verification of cas no

The CAS Registry Mumber 39904-09-1 includes 8 digits separated into 3 groups by hyphens. The first part of the number,starting from the left, has 5 digits, 3,9,9,0 and 4 respectively; the second part has 2 digits, 0 and 9 respectively.
Calculate Digit Verification of CAS Registry Number 39904-09:
(7*3)+(6*9)+(5*9)+(4*0)+(3*4)+(2*0)+(1*9)=141
141 % 10 = 1
So 39904-09-1 is a valid CAS Registry Number.

39904-09-1Relevant articles and documents

Epoxidation of DL-limonene using an indenyl molybdenum(II) tricarbonyl complex as catalyst precursor

Abrantes, Marta,Bruno, Sofia M.,Tomé, Cátia,Pillinger, Martyn,Gon?alves, Isabel S.,Valente, Anabela A.

, p. 64 - 67 (2011)

The complex IndMo(CO)3Me (Ind = η5-C 9H7) is an effective catalyst precursor for the epoxidation of DL-limonene using the following oxidant solutions: (i) commercial tert-butylhydroperoxide in decane (TBHPdec), (ii) commercial aqueous TBHP (TBHPaq) pre-mixed with limonene (TBHPlim), or (iii) TBHPaq pre-mixed with 1,2-dichloroethane (TBHPdce); simple pre-drying treatments of the reaction solutions were applied prior to feeding the catalyst precursor to the batch reactor. The best results were found for the efficiently pre-dried reaction system (iii), which gave higher 1,2-epoxy-p-meth-8-ene yield at 35 min/55 °C than (i) (82% and 73% yield, respectively). This approach avoids the undesirable partial oxidation of decane, which would imply costly work-up procedures to remove high boiling point impurities from the epoxides. These results together with studies on the reactivity of different olefins indicate fairly high regioselectivity toward the epoxidation of the internal double bonds.

Water soluble lanthanoid benzoate complexes for the kinetic separation of cis/trans-limonene oxide

Andrews, Philip C.,Blair, Michael,Fraser, Benjamin H.,Junk, Peter C.,Massi, Massimiliano,Tuck, Kellie L.

, p. 2833 - 2838 (2006)

A new class of water soluble, environmentally friendly, lanthanoid 3,5-diacetamidobenzoate complexes (Ln = La, Gd, Yb) have been synthesized. The La and Gd complexes selectively catalyse hydrolysis of the cis-isomer of limonene oxide allowing for the separation of the trans-isomer (>98:2 dr) in up to 74% yield. Comparative studies with the corresponding chlorides and triflates reveal the lanthanoid benzoate complexes to be more active than the chlorides, but less active, though more selective, than the triflates.

Enantioselective total syntheses of the proposed structures of prevezol B and evaluation of anti-cancer activity

Leung, Anna E.,Rubbiani, Riccardo,Gasser, Gilles,Tuck, Kellie L.

, p. 8239 - 8246 (2014)

The first enantioselective total syntheses of the proposed structures of the natural product prevezol B are reported. The reported syntheses complement the previously-reported syntheses of the proposed structures of prevezol C, a stereoisomer of prevezol B. It was previously shown that the structure of the naturally occurring prevezol C had been incorrectly assigned. This work has led us to conclude that the proposed structures of prevezol B are also incorrect and major revision of both of the structures of the prevezols B and C is required. Cytotoxicity studies on the human cervical cancer cell line HeLa revealed that the synthesized prevezol B and C compounds were not active even at the highest concentration used (100 μM). However, one of the synthetic precursors was shown to have modest potency against HeLa cells (IC50 = 23.5 ± 1.8 μM). This journal is

A silicododecamolybdate/pyridinium-tetrazole hybrid molecular salt as a catalyst for the epoxidation of bio-derived olefins

Nunes, Martinique S.,Neves, Patrícia,Gomes, Ana C.,Cunha-Silva, Luís,Lopes, André D.,Valente, Anabela A.,Pillinger, Martyn,Gon?alves, Isabel S.

, (2020/11/27)

The hybrid polyoxometalate (POM) salt (Hptz)4[SiMo12O40]?nH2O (1) (ptz = 5-(2-pyridyl)tetrazole) has been prepared, characterized by X-ray crystallography, and examined as a catalyst for the epoxidation of cis-cyclooctene (Cy) and bio-derived olefins, namely dl-limonene (Lim; a naturally occurring monoterpene found in the rinds of citrus fruits), methyl oleate and methyl linoleate (fatty acid methyl esters (FAMEs) obtained by transesterification of vegetable oils). The crystal structure of 1 consists of α-Keggin-type heteropolyanions, [SiMo12O40]4-, surrounded by space-filling and charge-balancing 2-(tetrazol-5-yl)pyridinium (Hptz+) cations, as well as by a large number of water molecules of crystallization (n = 9). The water molecules mediate an extensive three-dimensional (3D) hydrogen-bonding network involving the inorganic anions and organic cations. For the epoxidation of the model substrate Cy in a nonaqueous system (tert-butylhydroperoxide as oxidant), the catalytic performance of 1 (100% epoxide yield at 24 h, 70 °C) was superior to that of the tetrabutylammonium salt (Bu4N)4[SiMo12O40] (2) (63% epoxide yield at 24 h), illustrating the role of the counterion Hptz+ in enhancing catalytic activity. The hybrid salt 1 was effective for the epoxidation of Lim (69%/85% conversion at 6 h/24 h) and the FAMEs (87–88%/100% conversion at 6 h/24 h), leading to useful bio-based products (epoxides, diepoxides and diol products).

Synthesis of limonene β-amino alcohol from (R)-(+)-α-methylbenzylamine and (+)-limonene 1,2-epoxide

Ait Said, Lyazid,El Bachiri, Abdelhadi,El Haimer, Chaimaa,El Hammoumi, Mohamed Merouane,Khoukhi, Mostafa

, (2021/06/02)

Two new compounds of β-amino alcohol are obtained using (R) - (+) - α-methylbenzylamine as starting material which is converted into two amines. Each of these compounds reacted in excess with a 1: 1 mixture of cis and trans-limonene oxide in the presence of water as a catalyst. The products obtained show that β-amino alcohol derived from trans-limonene oxide is obtained and unreacted cis-limonene oxide from the reaction mixture as well as the amine is attained. Whereas the addition of the synthesized carbamate of the same primary amine over the 1: 1 mixture of cis and trans -limonene oxide in the presence of water results in the hydrolysis product and the recovery of unreacted trans-limonene oxide.

Sustainable catalytic protocols for the solvent free epoxidation and: Anti -dihydroxylation of the alkene bonds of biorenewable terpene feedstocks using H2O2 as oxidant

Cunningham, William B.,Tibbetts, Joshua D.,Hutchby, Marc,Maltby, Katarzyna A.,Davidson, Matthew G.,Hintermair, Ulrich,Plucinski, Pawel,Bull, Steven D.

supporting information, p. 513 - 524 (2020/02/13)

A tungsten-based polyoxometalate catalyst employing aqueous H2O2 as a benign oxidant has been used for the solvent free catalytic epoxidation of the trisubstituted alkene bonds of a wide range of biorenewable terpene substrates. This epoxidation protocol has been scaled up to produce limonene oxide, 3-carene oxide and α-pinene oxide on a multigram scale, with the catalyst being recycled three times to produce 3-carene oxide. Epoxidation of the less reactive disubstituted alkene bonds of terpene substrates could be achieved by carrying out catalytic epoxidation reactions at 50 °C. Methods have been developed that enable direct epoxidation of untreated crude sulfate turpentine to afford 3-carene oxide, α-pinene oxide and β-pinene oxide. Treatment of crude epoxide products (no work-up) with a heterogeneous acid catalyst (Amberlyst-15) results in clean epoxide hydrolysis to afford their corresponding terpene-anti-diols in good yields.

Limonene oxyfunctionalization over Cu-modified silicates employing hydrogen peroxide and t-Butyl hydroperoxide: Reaction pathway analysis

Vaschetti, Virginia M.,Cánepa, Analía L.,Barrera, Deicy,Sapag, Karim,Eimer, Griselda A.,Casuscelli, Sandra G.

, (2018/11/23)

Limonene oxidation over Cu-nanostructured mesoporous materials was studied. Three solids with different copper content were synthesized employing the template-ion exchange method, and physically-chemically analyzed by a multi-technical characterization. The performance of the molecular sieves as catalysts in the liquid phase oxyfunctionalization of limonene, employing hydrogen peroxide (H2O2) or t-butyl hydroperoxide (TBHP) as oxidants was evaluated. All synthesized Cu-MCM materials were active in the reaction. The obtained results showed that the used oxidant had an important influence on the products distribution under the employed conditions. With H2O2, compounds of high added value such as limonene oxide, carveol and carvone were mainly obtained. Meanwhile, with TBHP, limonene hydroperoxide turned out to be the major product. Finally, a reaction mechanism was proposed for each oxidant.

Selective Catalytic Synthesis of 1,2- and 8,9-Cyclic Limonene Carbonates as Versatile Building Blocks for Novel Hydroxyurethanes

Maltby, Katarzyna A.,Hutchby, Marc,Plucinski, Pawel,Davidson, Matthew G.,Hintermair, Ulrich

supporting information, p. 7405 - 7415 (2020/05/25)

The selective catalytic synthesis of limonene-derived monofunctional cyclic carbonates and their subsequent functionalisation via thiol–ene addition and amine ring-opening is reported. A phosphotungstate polyoxometalate catalyst used for limonene epoxidation in the 1,2-position is shown to also be active in cyclic carbonate synthesis, allowing a two-step, one-pot synthesis without intermittent epoxide isolation. When used in conjunction with a classical halide catalyst, the polyoxometalate increased the rate of carbonation in a synergistic double-activation of both substrates. The cis isomer is shown to be responsible for incomplete conversion and by-product formation in commercial mixtures of 1,2-limomene oxide. Carbonation of 8,9-limonene epoxide furnished the 8,9-limonene carbonate for the first time. Both cyclic carbonates underwent thiol–ene addition reactions to yield linked di-monocarbonates, which can be used in linear non-isocyanate polyurethanes synthesis, as shown by their facile ring-opening with N-hexylamine. Thus, the selective catalytic route to monofunctional limonene carbonates gives straightforward access to monomers for novel bio-based polymers.

Systematic synthetic study of four diastereomerically distinct limonene-1,2-diols and their corresponding cyclic carbonates

Morikawa, Hiroshi,Yamaguchi, Jun-ichi,Sugimura, Shun-ichi,Minamoto, Masato,Gorou, Yuuta,Morinaga, Hisatoyo,Motokucho, Suguru

supporting information, p. 130 - 136 (2019/01/30)

In order to produce versatile and potentially functional terpene-based compounds, a (R)-limonene-derived diol and its corresponding five-membered cyclic carbonate were prepared. The diol (cyclic carbonate) comprises four diastereomers based on the stereochemical configuration of the diol (and cyclic carbonate) moiety. By choosing the appropriate starting compounds (trans- and cis-limonene oxide) and conditions, the desired diastereomers were synthesised in moderate to high yields with, in most cases, high stereoselectivity. Comparison of the NMR data of the obtained diols and carbonates revealed that the four different diastereomers of each compound could be distinguished by reference to their characteristic signals.

Oxy-functionalization of olefins with neat and heterogenized binuclear V(IV)O and Fe(II)complexes: Effect of steric hindrance on product selectivity and output in homogeneous and heterogeneous phase

Parmar, Digvijaysinh K.,Butani, Pinal M.,Thumar, Niraj J.,Jasani, Pinal M.,Padaliya, Ravi V.,Sandhiya, Paba R.,Nakum, Haresh D.,Khan, Md. Nasim,Makwana, Dipak

, (2019/06/05)

Neat {[VO(sal2bz)]2; [Fe(sal2bz)(H2O)2]2·2H2O} and zeolite-Y immobilized {[VO(sal2bz)]2-Y; [Fe(sal2bz)(H2O)2]2-Y} binuclear complexes have been prepared and characterized by spectroscopic techniques (IR, UV–vis), elemental analyses (CHN, ICP-OES), thermal study (TGA), scanning electron micrograph (SEM), adsorption study (BET)and X-ray diffraction (XRD)patterns. Neat (homogeneous)and immobilized (heterogeneous)complexes were employed as catalysts in the oxidation of olefins, namely, cyclohexene, limonene and α-pinene in the presence of 30% hydrogen peroxide. 100% conversion of cyclohexene and α-pinene was obtained while limonene was oxidized up to 90%. Homogeneous catalysts showed highly selective result as neat [VO(sal2bz)]2 complex has provided 87% cyclohexane-1,2-diol and neat [Fe(sal2bz)(H2O)2]2·2H2O complex has provided 79% verbenone in oxidation of cyclohexene and α-pinene, respectively. We have observed that due to steric hindrance, formation of olefinic oxidation products increases on moving from α-pinene to limonene and limonene to cyclohexene. Additionally. recovered heterogeneous catalysts showed intact results up to two consecutive runs. Probable catalytic mechanism has been proposed for oxidation of cyclohexene.

Post a RFQ

Enter 15 to 2000 letters.Word count: 0 letters

Attach files(File Format: Jpeg, Jpg, Gif, Png, PDF, PPT, Zip, Rar,Word or Excel Maximum File Size: 3MB)

1

What can I do for you?
Get Best Price

Get Best Price for 39904-09-1