Welcome to LookChem.com Sign In|Join Free

CAS

  • or

4043-71-4

Post Buying Request

4043-71-4 Suppliers

Recommended suppliersmore

  • Product
  • FOB Price
  • Min.Order
  • Supply Ability
  • Supplier
  • Contact Supplier

4043-71-4 Usage

Check Digit Verification of cas no

The CAS Registry Mumber 4043-71-4 includes 7 digits separated into 3 groups by hyphens. The first part of the number,starting from the left, has 4 digits, 4,0,4 and 3 respectively; the second part has 2 digits, 7 and 1 respectively.
Calculate Digit Verification of CAS Registry Number 4043-71:
(6*4)+(5*0)+(4*4)+(3*3)+(2*7)+(1*1)=64
64 % 10 = 4
So 4043-71-4 is a valid CAS Registry Number.
InChI:InChI=1/C4H5NO2S/c1-5-2-3(6)8-4(5)7/h2H2,1H3

4043-71-4SDS

SAFETY DATA SHEETS

According to Globally Harmonized System of Classification and Labelling of Chemicals (GHS) - Sixth revised edition

Version: 1.0

Creation Date: Aug 19, 2017

Revision Date: Aug 19, 2017

1.Identification

1.1 GHS Product identifier

Product name 5-[(E)-prop-1-enyl]benzo[1,3]dioxole

1.2 Other means of identification

Product number -
Other names 4-METHYL-2-ISOPROPYL-1-HEXANOL

1.3 Recommended use of the chemical and restrictions on use

Identified uses For industry use only.
Uses advised against no data available

1.4 Supplier's details

1.5 Emergency phone number

Emergency phone number -
Service hours Monday to Friday, 9am-5pm (Standard time zone: UTC/GMT +8 hours).

More Details:4043-71-4 SDS

4043-71-4Relevant articles and documents

Iron Catalyzed Double Bond Isomerization: Evidence for an FeI/FeIII Catalytic Cycle

Woof, Callum R.,Durand, Derek J.,Fey, Natalie,Richards, Emma,Webster, Ruth L.

supporting information, p. 5972 - 5977 (2021/03/17)

Iron-catalyzed isomerization of alkenes is reported using an iron(II) β-diketiminate pre-catalyst. The reaction proceeds with a catalytic amount of a hydride source, such as pinacol borane (HBpin) or ammonia borane (H3N?BH3). Reactivity with both allyl arenes and aliphatic alkenes has been studied. The catalytic mechanism was investigated by a variety of means, including deuteration studies, Density Functional Theory (DFT) and Electron Paramagnetic Resonance (EPR) spectroscopy. The data obtained support a pre-catalyst activation step that gives access to an η2-coordinated alkene FeI complex, followed by oxidative addition of the alkene to give an FeIII intermediate, which then undergoes reductive elimination to allow release of the isomerization product.

Nickel-Catalyzed Allylic C(sp2)–H Activation: Stereoselective Allyl Isomerization and Regiospecific Allyl Arylation of Allylarenes

Wu, Qiang,Wang, Lanlan,Jin, Rizhe,Kang, Chuanqing,Bian, Zheng,Du, Zhijun,Ma, Xiaoye,Guo, Haiquan,Gao, Lianxun

, p. 5415 - 5422 (2016/11/22)

Stereoselective allyl isomerization and regiospecific allyl arylation reactions of allylarenes with a catalytic system comprising nickel(II) with an aryl Grignard reagent were studied. Both reactions are triggered by allylic internal C(sp2)–H activation by in-situ-formed Ni0, which is inserted into the C–H bond at the 2-position of the allyl moiety without a directing group. The isomerization of allylarene to 1-propenylarene favors the E isomer and proceeds with quantitative conversion. The arylation takes place through oxidative cross-coupling of allylarenes with excess Grignard reagent. It occurs regiospecifically at the position of C(sp2)–H activation and represents a new method for the synthesis of 1,1-disubstituted olefins. The results of deuterium labeling experiments reveal an alkenyl/alkyl mechanism involving allylic internal C(sp2)–H activation and multiple intermolecular 1,2-, 1,3-, and 2,3-hydride shifts. These methods represent new approaches to the functionalization of olefins, and the mechanistic investigations could be helpful for the discovery and design of new strategies for olefin functionalization.

Rhodium catalyzed aqueous biphasic hydroformylation of naturally occurring allylbenzenes in the presence of water-soluble phosphorus ligands

Baricelli, Pablo J.,Rodriguez, Mariandry,Melean, Luis G.,Alonso, Maria Modro?o,Borusiak, Margarita,Rosales, Merlin,Gonzalez, Beatriz,De Oliveira, Kelley C. B.,Gusevskaya, Elena V.,Dos Santos, Eduardo N.

, p. 163 - 169 (2015/05/05)

The rhodium-catalyzed hydroformylation of eugenol was performed in aqueous biphasic systems using various water soluble phosphines: TPPTS (triphenylphosphinetrisulphonated); BDPPETS (bisdiphenylphosphinoethanetetrasulphonated), BDPPPTS (bisdiphenylphosphi

Post a RFQ

Enter 15 to 2000 letters.Word count: 0 letters

Attach files(File Format: Jpeg, Jpg, Gif, Png, PDF, PPT, Zip, Rar,Word or Excel Maximum File Size: 3MB)

1

What can I do for you?
Get Best Price

Get Best Price for 4043-71-4