Welcome to LookChem.com Sign In|Join Free

CAS

  • or

4401-18-7

Post Buying Request

4401-18-7 Suppliers

Recommended suppliersmore

  • Product
  • FOB Price
  • Min.Order
  • Supply Ability
  • Supplier
  • Contact Supplier

4401-18-7 Usage

Check Digit Verification of cas no

The CAS Registry Mumber 4401-18-7 includes 7 digits separated into 3 groups by hyphens. The first part of the number,starting from the left, has 4 digits, 4,4,0 and 1 respectively; the second part has 2 digits, 1 and 8 respectively.
Calculate Digit Verification of CAS Registry Number 4401-18:
(6*4)+(5*4)+(4*0)+(3*1)+(2*1)+(1*8)=57
57 % 10 = 7
So 4401-18-7 is a valid CAS Registry Number.

4401-18-7SDS

SAFETY DATA SHEETS

According to Globally Harmonized System of Classification and Labelling of Chemicals (GHS) - Sixth revised edition

Version: 1.0

Creation Date: Aug 18, 2017

Revision Date: Aug 18, 2017

1.Identification

1.1 GHS Product identifier

Product name phenylcycloheptane

1.2 Other means of identification

Product number -
Other names Phenyl-cycloheptan

1.3 Recommended use of the chemical and restrictions on use

Identified uses For industry use only.
Uses advised against no data available

1.4 Supplier's details

1.5 Emergency phone number

Emergency phone number -
Service hours Monday to Friday, 9am-5pm (Standard time zone: UTC/GMT +8 hours).

More Details:4401-18-7 SDS

4401-18-7Relevant articles and documents

Iron(II) Active Species in Iron-Bisphosphine Catalyzed Kumada and Suzuki-Miyaura Cross-Couplings of Phenyl Nucleophiles and Secondary Alkyl Halides

Daifuku, Stephanie L.,Kneebone, Jared L.,Snyder, Benjamin E. R.,Neidig, Michael L.

, p. 11432 - 11444 (2015)

While previous studies have identified FeMes2(SciOPP) as the active catalyst species in iron-SciOPP catalyzed Kumada cross-coupling of mesitylmagnesium bromide and primary alkyl halides, the active catalyst species in cross-couplings with phenyl nucleophiles, where low valent iron species might be prevalent due to accessible reductive elimination pathways, remains undefined. In the present study, in situ M?ssbauer and magnetic circular dichroism spectroscopic studies combined with inorganic syntheses and reaction studies are employed to evaluate the in situ formed iron species and identify the active catalytic species in iron-SciOPP catalyzed Suzuki-Miyaura and Kumada cross-couplings of phenyl nucleophiles and secondary alkyl halides. While reductive elimination to form Fe(η6-biphenyl)(SciOPP) occurs upon reaction of FeCl2(SciOPP) with phenyl nucleophiles, this iron(0) species is not found to be kinetically competent for catalysis. Importantly, mono- and bis-phenylated iron(II)-SciOPP species that form prior to reductive elimination are identified, where both species are found to be reactive toward electrophile at catalytically relevant rates. The higher selectivity toward the formation of cross-coupled product observed for the monophenylated species combined with the undertransmetalated nature of the in situ iron species in both Kumada and Suzuki-Miyaura reactions indicates that Fe(Ph)X(SciOPP) (X = Br, Cl) is the predominant reactive species in cross-coupling. Overall, these studies demonstrate that low-valent iron is not required for the generation of highly reactive species for effective aryl-alkyl cross-couplings.

Rational Design of an Iron-Based Catalyst for Suzuki–Miyaura Cross-Couplings Involving Heteroaromatic Boronic Esters and Tertiary Alkyl Electrophiles

Byers, Jeffery A.,Crockett, Michael P.,Li, Bo,Wong, Alexander S.

supporting information, p. 5392 - 5397 (2020/03/04)

Suzuki–Miyaura cross-coupling reactions between a variety of alkyl halides and unactivated aryl boronic esters using a rationally designed iron-based catalyst supported by β-diketiminate ligands are described. High catalyst activity resulted in a broad substrate scope that included tertiary alkyl halides and heteroaromatic boronic esters. Mechanistic experiments revealed that the iron-based catalyst benefited from the propensity for β-diketiminate ligands to support low-coordinate and highly reducing iron amide intermediates, which are very efficient for effecting the transmetalation step required for the Suzuki–Miyaura cross-coupling reaction.

Cobalt-Catalyzed Hydrogenations via Olefin Cobaltate and Hydride Intermediates

Sandl, Sebastian,Maier, Thomas M.,Van Leest, Nicolaas P.,Kr?ncke, Susanne,Chakraborty, Uttam,Demeshko, Serhiy,Koszinowski, Konrad,De Bruin, Bas,Meyer, Franc,Bodensteiner, Michael,Herrmann, Carmen,Wolf, Robert,Von Jacobi Wangelin, Axel

, p. 7596 - 7606 (2019/08/20)

Redox noninnocent ligands are a promising tool to moderate electron transfer processes within base-metal catalysts. This report introduces bis(imino)acenaphthene (BIAN) cobaltate complexes as hydrogenation catalysts. Sterically hindered trisubstituted alkenes, imines, and quinolines underwent clean hydrogenation under mild conditions (2-10 bar, 20-80 °C) by use of the stable catalyst precursor [(DippBIAN)CoBr2] and the cocatalyst LiEt3BH. Mechanistic studies support a homogeneous catalysis pathway involving alkene and hydrido cobaltates as active catalyst species. Furthermore, considerable reaction acceleration by alkali cations and Lewis acids was observed. The dinuclear hydridocobaltate anion with bridging hydride ligands was isolated and fully characterized.

Post a RFQ

Enter 15 to 2000 letters.Word count: 0 letters

Attach files(File Format: Jpeg, Jpg, Gif, Png, PDF, PPT, Zip, Rar,Word or Excel Maximum File Size: 3MB)

1

What can I do for you?
Get Best Price

Get Best Price for 4401-18-7