Welcome to LookChem.com Sign In|Join Free

CAS

  • or
Trans-1,3-diphenyl-2-propen-1-ol, also known as trans-β-ionone, is an organic compound with the molecular formula C15H14O. It is a colorless to pale yellow crystalline solid that is widely used in the fragrance industry due to its violet-like scent. This chemical is a key component in the synthesis of various perfumes, particularly those with floral and woody notes. Trans-β-ionone is also found in natural sources such as violet flowers and some types of essential oils. It is synthesized through various methods, including the aldol condensation of acetone and benzaldehyde, followed by cyclization and dehydration. The compound is known for its stability and is used in the production of vitamin A and as a precursor in the synthesis of other fragrance compounds.

4663-33-6

Post Buying Request

4663-33-6 Suppliers

Recommended suppliersmore

  • Product
  • FOB Price
  • Min.Order
  • Supply Ability
  • Supplier
  • Contact Supplier

4663-33-6 Usage

Check Digit Verification of cas no

The CAS Registry Mumber 4663-33-6 includes 7 digits separated into 3 groups by hyphens. The first part of the number,starting from the left, has 4 digits, 4,6,6 and 3 respectively; the second part has 2 digits, 3 and 3 respectively.
Calculate Digit Verification of CAS Registry Number 4663-33:
(6*4)+(5*6)+(4*6)+(3*3)+(2*3)+(1*3)=96
96 % 10 = 6
So 4663-33-6 is a valid CAS Registry Number.

4663-33-6SDS

SAFETY DATA SHEETS

According to Globally Harmonized System of Classification and Labelling of Chemicals (GHS) - Sixth revised edition

Version: 1.0

Creation Date: Aug 17, 2017

Revision Date: Aug 17, 2017

1.Identification

1.1 GHS Product identifier

Product name trans-1,3-Diphenyl-2-propen-1-ol

1.2 Other means of identification

Product number -
Other names 1,3-diphenylprop-1-en-3-ol

1.3 Recommended use of the chemical and restrictions on use

Identified uses For industry use only.
Uses advised against no data available

1.4 Supplier's details

1.5 Emergency phone number

Emergency phone number -
Service hours Monday to Friday, 9am-5pm (Standard time zone: UTC/GMT +8 hours).

More Details:4663-33-6 SDS

4663-33-6Relevant articles and documents

Palladium-Catalyzed Synthesis of α-Methyl Ketones from Allylic Alcohols and Methanol

Biswal, Priyabrata,Samser, Shaikh,Meher, Sushanta Kumar,Chandrasekhar, Vadapalli,Venkatasubbaiah, Krishnan

supporting information, p. 413 - 419 (2021/11/01)

One-pot synthesis of α-methyl ketones starting from 1,3-diaryl propenols or 1-aryl propenols and methanol as a C1 source is demonstrated. This one-pot isomerization-methylation is catalyzed by commercially available Pd(OAc)2 with H2O as the only by-product. Mechanistic studies and deuterium labelling experiments indicate the involvement of isomerization of allyl alcohol followed by methylation through a hydrogen-borrowing pathway in these isomerization-methylation reactions.

Pd-Catalyzed Nazarov-Type Cyclization: Application in the Total Synthesis of β-Diasarone and Other Complex Cyclopentanoids

Singh, Bara,Bankar, Siddheshwar K.,Ramasastry

supporting information, p. 1043 - 1048 (2022/02/05)

We describe the palladium-catalyzed Nazarov-type cyclization of easily accessible (hetero)arylallyl acetates to pentannulated (hetero)arenes. This method provides ready access to various types of bi-, tri-, tetra-, and pentacyclic cyclopentanoids under ne

Hf-MOF catalyzed Meerwein?Ponndorf?Verley (MPV) reduction reaction: Insight into reaction mechanism

Lin, Yamei,Bu, Qingxia,Xu, Jiaxian,Liu, Xiao,Zhang, Xueping,Lu, Guo-Ping,Zhou, Baojing

, (2021/01/25)

Hf-MOF-808 exhibits excellent activity and specific selectivity on the hydrogenation of carbonyl compounds via a hydrogen transfer strategy. Its superior activity than other Hf-MOFs is attributed to its poor crystallinity, defects and large specific surface area, thereby containing more Lewis acid-base sites which promote this reaction. Density functional theory (DFT) computations are performed to explore the catalytic mechanism. The results indicate that alcohol and ketone fill the defects of Hf-MOF to form a six-membered ring transition state (TS) complex, in which Hf as the center of Lewis stearic acid coordinates with the oxygen of the substrate molecule, thus effectively promoting hydrogen transfer process. Other reactive groups, such as –NO2, C = C, -CN, of inadequate hardness or large steric hindrance are difficult to coordinate with Hf, thus weakening their catalytic effect, which explains the specific selectivity Hf-MOF-808 for reducing the carbonyl group.

One-pot two-step reaction of selenosulfonate with isocyanides and allyl alcohol under aqueous conditions: Atom-economic synthesis of selenocarbamates and allyl sulfones

Ai, Jing-Jing,Li, Jian,Ji, Shun-Jun,Wang, Shun-Yi

supporting information, p. 721 - 724 (2020/07/24)

In many reactions involving selenosulfonate or thiosulfonate, the sulfone group often leaves in form of benzenesulfinic acid or sodium benzenesulfinate. A one-pot two-step reaction of selenosulfonate with isocyanides and allyl alcohol under aqueous conditions to afford selenocarbamates and allyl sulfone compounds is reported. The sulfinic acid as the first-step side product is converted to the allyl sulfone compound by water promoted reaction with allyl alcohol. Water acts as both an oxygen source of selenocarbamates and as a promoter to drive the second step reaction. The reactions have the advantages of mild conditions, green, environment-friendly, and high atomic economy.

Facile microwave-assisted synthesis and antitubercular evaluation of novel aziridine derivatives

Sarojini, Perumal,Jeyachandran, Malaichamy,Sriram, Dharmarajan,Ranganathan, Palraj,Gandhimathi

, (2021/02/26)

Novel 2-(aryloxymethyl)aziridines and 2-((3-aryl-1-phenylallyloxy)methyl)aziridine derivatives were prepared via ring-opening reaction of epoxides. The synthesized derivatives were characterized by using elemental analysis (EA), FT-IR, 13C NMR, and 1H NMR. The in vitro antitubercular activities of the synthesized compounds were evaluated against Mycobacterium tuberculosis H37Rv (MTB H37Rv) strain using MTT-MABA assay. All the aziridine derivatives exhibited improved persuasive antitubercular activity against MTB H37Rv in comparison with standard drugs. Among the tested compounds, 2-(naphthalene-1-yloxy) methyl aziridine (5b), 2-(naphthalene-2-yloxy)methylaziridine (5c), 2-(m-tolyloxymethyl)aziridine (5e), 2-(3-(4-methoxyphenyl)-1-phenylalloxy)methylaziridine (12b) and 2-(3-(2-chlorophenyl)-1-phenylallyloxy)methylaziridine (12c) revealed promising activity against MTB H37Rv. Specifically, compound 5b and 12 b showed three-times more active (MIC = 0.5 μg/mL) than the standard drugs ethambutol (MIC = 1.56 μg/mL) and ciprofloxacin (MIC = 1.56 μg/mL).

Bu4NHSO4-Catalyzed Direct N-Allylation of Pyrazole and its Derivatives with Allylic Alcohols in Water: A Metal-Free, Recyclable and Sustainable System

Zhuang, Hongfeng,Lu, Nan,Ji, Na,Han, Feng,Miao, Chengxia

supporting information, p. 5461 - 5472 (2021/09/29)

Allylic amines are valuable and functional building blocks. Direct N-allylation of pyrazole and its derivatives as an atom economic strategy to provide allylic amines has been achieved only using commercial Bu4NHSO4 as the metal-free catalyst and water as the solvent without any additives. 11–93% isolated yields were obtained for the N-allylation of pyrazole and its derivatives with allylic alcohols. Bu4NHSO4 could be reused for six times by simple extraction nearly without loss of catalytic activity and was also suitable for a gram-scale production. The reaction of allylic ether and pyrazole did not occur to give the desired product indicated that allylic ether was not the active intermediate in the pathway. Density functional theory (DFT) calculations reveal that there are hydrogen bonding effects among substrates, solvent and catalyst, especially the one formed between allylic alcohol and H2O. Control experiments in different protic solvents further demonstrate the intermolecular hydrogen bonding of allylic alcohol and water. (Figure presented.).

Potassium Base-Promoted Diastereoselective Synthesis of 1,3-Diols from Allylic Alcohols and Aldehydes through a Tandem Allylic-Isomerization/Aldol–Tishchenko Reaction

Sai, Masahiro

supporting information, p. 4053 - 4056 (2021/10/25)

This study reports the first base-promoted aldol–Tishchenko reactions of allylic alcohols with aldehydes initiated by allylic isomerization. The reaction enables the diastereoselective synthesis of a variety of 1,3-diols with three contiguous stereogenic centers. Unlike commonly reported systems, our method allows the use of readily available allylic alcohols as nucleophiles instead of enolizable aldehydes and ketones.

Iridium Azocarboxamide Complexes: Variable Coordination Modes, C-H Activation, Transfer Hydrogenation Catalysis, and Mechanistic Insights

Albold, Uta,Chandra, Shubhadeep,Hazari, Arijit Singha,Kelm, Ola,Ko?mrlj, Janez,Sarkar, Biprajit,Urankar, Damijana

supporting information, p. 3907 - 3916 (2021/12/03)

Azocarboxamides, a special class of azo ligands, display intriguing electronic properties due to their versatile binding modes and coordination flexibility. These properties may have significant implications for their use in homogeneous catalysis. In the present report, half-sandwich Ir-Cp? complexes of two different azocarboxamide ligands are presented. Different coordination motifs of the ligand were realized using base and chloride abstracting ligand to give N∧N-, N∧O-, and N∧C-chelated monomeric iridium complexes. For the azocarboxamide ligand having methoxy substituted at the phenyl ring, a mixture of N∧C-chelated mononuclear (Ir-5) and N∧N,N∧C-chelated dinuclear complexes (Ir-4) were obtained by activating the C-H bond of the aryl ring. No such C-H activation was observed for the ligand without the methoxy substituent. The molecular identity of the complexes was confirmed by spectroscopic analyses, while X-ray diffraction analyses further confirmed three-legged piano-stool structure of the complexes along with the above binding modes. All complexes were found to exhibit remarkable activity as precatalysts for the transfer hydrogenation of carbonyl groups in the presence of a base, even at low catalyst loading. Optimization of reaction conditions divulged superior catalytic activity of Ir-3 and Ir-4 complexes in transfer hydrogenation over the other catalysts. Investigation of the influence of binding modes on the catalytic activity along with wide range substrates, tolerance to functional groups, and mechanistic insights into the reaction pathway are also presented. These are the first examples of C-H activation in azocarboxamide ligands.

Sodium Aminodiboranate, a New Reagent for Chemoselective Reduction of Aldehydes and Ketones to Alcohols

Wang, Jin,Guo, Yu,Li, Shouhu,Chen, Xuenian

supporting information, p. 1104 - 1108 (2021/05/25)

Sodium aminodiboranate (NaNH 2(BH 3) 2, NaADBH) is a new member of the old borane family, which exhibits superior performance in chemoselective reduction. Experimental results show that NaADBH can rapidly reduce aldehydes and ketones to the corresponding alcohols in high efficiency and selectivity under mild conditions. There are little steric and electronic effects on this reduction.

Ruthenium [NNN] and [NCN]-type pincer complexes with phosphine coligands: synthesis, structures and catalytic applications

Zhang, Bo,Wang, Haiying,Yan, Xuechao,Duan, Yu-Ai,Guo, Shuai,Luo, Fei-Xian

, p. 99 - 110 (2019/11/20)

A series of ruthenium [NNN]- or [NCN]-type complexes (3–7) bearing PPh3 ancillary ligands have been synthesized from pyridine- or phenylene-bridged bis(triazoles) 1 and 2. In the case of [NNN]-pincer complex 3, an unusual and unexpected cis-orientation adopted by two sterically demanding PPh3 ligands was observed, and such configuration proved to be unchanged in solution for a long time. By contrast and as expected, the two phosphines are found to be trans to each other in the case of [NCN]-type pincer complex 4, but an oxidation of RuII center to RuIII occurred. Complex cis-3 underwent ligand exchanges leading to the formations of diphosphine derivatives 5 and 6. As a representative, cis-3 was treated with the base in isopropanol affording a mixture of Ru–hydrido complexes with various phosphine binding modes, one of which (trans-7) bearing two trans-standing phosphines has been successfully isolated and fully characterized. The catalytic performances of all newly synthesized Ru complexes have been examined and compared in transfer hydrogenations of ketones and enones, in which mono-phosphine complexes proved to be significantly superior to their diphosphine counterparts. The catalytic process proved to involve Ru–H key intermediates, but the trans-oriented Ru–H species is unlikely to be the main catalytic contributor. In particular, the best performer cis-3 exhibits high chemoselectivity in certain cases catalyzing α,β-unsaturated ketones, whose behavior is quite different compared to most precedents.

Post a RFQ

Enter 15 to 2000 letters.Word count: 0 letters

Attach files(File Format: Jpeg, Jpg, Gif, Png, PDF, PPT, Zip, Rar,Word or Excel Maximum File Size: 3MB)

1

What can I do for you?
Get Best Price

Get Best Price for 4663-33-6