Welcome to LookChem.com Sign In|Join Free

CAS

  • or

4674-50-4

Post Buying Request

4674-50-4 Suppliers

Recommended suppliersmore

  • Product
  • FOB Price
  • Min.Order
  • Supply Ability
  • Supplier
  • Contact Supplier

4674-50-4 Usage

Description

Different sources of media describe the Description of 4674-50-4 differently. You can refer to the following data:
1. Nootkatone has a pleasant taste. It may be prepared by oxidation of valencene (a sesquiterpene) with tertiary butyl chromate.
2. (+)-Nootkatone is sesquiterpene ketone originally isolated from grapefruit juice and peel oil with diverse biological activity. It is lethal against ticks, fleas, and mosquitoes with LC50 values of 0.0029, 0.0061, and 0.0046% w/v, respectively. Pretreatment of wood with (+)-nootkatone reduces tunnel lengths, feeding, and survival rates in C. formosanus termites. (+)-Nootkatone (10-100 μM) dose-dependently activates AMPKα1 and AMPKα2 in C2C12 mouse myoblast lysate containing a substrate peptide. It dose-dependently inhibits platelet aggregation induced by collagen, thrombin , and arachidonic acid when used at concentrations ranging from 10 to 100 μM with almost complete inhibition at the highest concentration. In vivo, (+)-nootkatone (3-30 mg/kg, p.o.) dose-dependently increases the length of tail bleeding time in mice. (+)-Nootkatone (0.1-0.3%, p.o.) dose-dependently reduces body weight and plasma glucose levels in mice fed a high-fat and high-sucrose diet.

Chemical Properties

Different sources of media describe the Chemical Properties of 4674-50-4 differently. You can refer to the following data:
1. Nootkatone has a powerful fruity sweet, citrusy, grapefruit peel oil-like aroma.
2. viscous yellow liquid or crystals with a citrus odour;
3. NOOTKATONE has been isolated from grapefruit peel and juice and identified in other citrus oils as well. The commercially available product is a colorless to yellowish liquid with a typical grapefruit odor. Nootkatone can be prepared by oxidation of valencene, a sesquiterpene hydrocarbon isolated from orange oils. The oxidation can be accomplished either by chemical or by biotechnological methods. Nootkatone is used for flavoring beverages.

Occurrence

Reported found in grapefruit oil and juice; traces are also reported found in the oils of bergamot, lemon, lime, orange and tangerine; also reported formed in canned orange juice on storage.

Uses

Nootkatone is an effective repellent/insecticide against mosquitos, and may repel bed bugs, head lice and other insects. Nootkatone in spray form has been shown as an effective repellent/insecticide against deer ticks and lone star ticks.

Preparation

By oxidation of valencene (a sesquiterpene) with tertiary butyl chromate.

Definition

ChEBI: A sesquiterpenoid that is 4,4a,5,6,7,8-hexahydronaphthalen-2(3H)-one which is substituted by methyl groups at positions 4 and 4a, and by an isopropenyl group at position 6 (the 4R,4aS,6R stereoisomer).

Aroma threshold values

Detection: 170 to 800 ppb

Taste threshold values

Taste characteristics at 20 ppm: grapefruit, citrus, orange and butter.

General Description

(+)-nootkatone, a bicyclic conjugated sesquiterpene ketone with a grapefruit-like flavor, is commonly used in fragrance, food, cosmetics and pharmaceutical industry. It can be synthesized from (+)-valencene via biotransformation. (+)-nootkatone is the active ingredient responsible for the antiplatelet effect of Cyperus rotundus, a well-known oriental traditional medicine. It also shows promising efficacy against Staphylococcus aureus biofilms.

Check Digit Verification of cas no

The CAS Registry Mumber 4674-50-4 includes 7 digits separated into 3 groups by hyphens. The first part of the number,starting from the left, has 4 digits, 4,6,7 and 4 respectively; the second part has 2 digits, 5 and 0 respectively.
Calculate Digit Verification of CAS Registry Number 4674-50:
(6*4)+(5*6)+(4*7)+(3*4)+(2*5)+(1*0)=104
104 % 10 = 4
So 4674-50-4 is a valid CAS Registry Number.
InChI:InChI=1/C15H22O/c1-10(2)12-5-6-13-8-14(16)7-11(3)15(13,4)9-12/h8,11-12H,1,5-7,9H2,2-4H3/t11-,12-,15+/m1/s1

4674-50-4 Well-known Company Product Price

  • Brand
  • (Code)Product description
  • CAS number
  • Packaging
  • Price
  • Detail
  • TCI America

  • (N0920)  (+)-Nootkatone  >97.0%(GC)

  • 4674-50-4

  • 1g

  • 425.00CNY

  • Detail
  • Alfa Aesar

  • (A19166)  (+)-Nootkatone, crystalline, 98+%   

  • 4674-50-4

  • 1g

  • 538.0CNY

  • Detail
  • Alfa Aesar

  • (A19166)  (+)-Nootkatone, crystalline, 98+%   

  • 4674-50-4

  • 5g

  • 2275.0CNY

  • Detail
  • Alfa Aesar

  • (A19166)  (+)-Nootkatone, crystalline, 98+%   

  • 4674-50-4

  • 25g

  • 9692.0CNY

  • Detail
  • Sigma-Aldrich

  • (44889)  (+)-Nootkatone  analytical standard

  • 4674-50-4

  • 44889-50MG

  • 741.78CNY

  • Detail
  • Aldrich

  • (74437)  (+)-Nootkatone  ≥99.0% (GC)

  • 4674-50-4

  • 74437-1G

  • 2,285.01CNY

  • Detail
  • Aldrich

  • (74437)  (+)-Nootkatone  ≥99.0% (GC)

  • 4674-50-4

  • 74437-2.5G

  • 4,832.10CNY

  • Detail

4674-50-4Synthetic route

(4R,4aS,6R)-4,4a,5,6,7,8-Hexahydro-4,4a-dimethyl-6-(1-chloro-1-methylethyl)-2(3H)-naphthalenone
72453-44-2

(4R,4aS,6R)-4,4a,5,6,7,8-Hexahydro-4,4a-dimethyl-6-(1-chloro-1-methylethyl)-2(3H)-naphthalenone

(+)-nootkatone
4674-50-4

(+)-nootkatone

Conditions
ConditionsYield
With sodium acetate In water; acetic acid at 100℃; for 2h;93%
With sodium acetate; acetic acid at 100℃; for 2h; Inert atmosphere;93%
With sodium acetate; acetic acid at 100℃; for 2h;93%
With aluminum oxide In hexane at 60℃; for 24h; Yield given;
semicarbazide hydrochloride
563-41-7

semicarbazide hydrochloride

(+)-nootkatone
4674-50-4

(+)-nootkatone

Conditions
ConditionsYield
Stage #1: valencene With manganese(IV) oxide In dichloromethane at -25℃; for 0.5h;
Stage #2: With tert.-butylhydroperoxide In dichloromethane; water at -10℃; for 9h; Reflux;
Stage #3: semicarbazide hydrochloride Further stages;
83%
Conditions
ConditionsYield
With Czapek-pepton medium; Pallavicinia subcilita at 30℃; for 168h; pH=7.0;82%
With pyridine; tert.-butylhydroperoxide; N-hydroxy-3,4,5,6-tetrachlorophthalimide; lithium perchlorate In acetone Reagent/catalyst; Solvent; Electrochemical reaction; chemoselective reaction;77%
With tert.-butylhydroperoxide; sodium chlorite In water; acetonitrile at 50℃; for 18h; Product distribution / selectivity;72%

A

phthalimide
136918-14-4

phthalimide

B

(+)-nootkatone
4674-50-4

(+)-nootkatone

C

4α,4aα-dimethyl-6β-(1-methylethenyl)-2,3,4,4a,5,6,7,8-octahydronaphthalene-2-ol
840474-83-1

4α,4aα-dimethyl-6β-(1-methylethenyl)-2,3,4,4a,5,6,7,8-octahydronaphthalene-2-ol

Conditions
ConditionsYield
With oxygen; N-hydroxyphthalimide; cobalt nitrate; cobalt(II) acetate; cobalt(III) acetylacetonate In acetonitrile at 40℃; under 9750.98 Torr; for 3h; Product distribution / selectivity;A n/a
B 67.9%
C 5.6%
With oxygen; N-hydroxyphthalimide; cobalt(II) acetate; cobalt(III) acetylacetonate In acetonitrile at 40℃; under 9750.98 Torr; for 4h; Product distribution / selectivity;A n/a
B 53.7%
C 1.4%
(4R,4aS,6R)-2-hydroperoxy-4,4a-dimethyl-6-(prop-1-en-2-yl)-2,3,4,4a,5,6,7,8-octahydronaphthalene
329309-57-1

(4R,4aS,6R)-2-hydroperoxy-4,4a-dimethyl-6-(prop-1-en-2-yl)-2,3,4,4a,5,6,7,8-octahydronaphthalene

A

(+)-nootkatone
4674-50-4

(+)-nootkatone

B

4α,4aα-dimethyl-6β-(1-methylethenyl)-2,3,4,4a,5,6,7,8-octahydronaphthalene-2-ol
840474-83-1

4α,4aα-dimethyl-6β-(1-methylethenyl)-2,3,4,4a,5,6,7,8-octahydronaphthalene-2-ol

Conditions
ConditionsYield
With lyophilisate of Pleurotus sapidus In aq. buffer at 20℃; for 48h; pH=7.4; Enzymatic reaction;A 16%
B 7%
Conditions
ConditionsYield
With culture medium of Mucor species; Czapek-pepton medium at 30℃; for 168h;A 0.7%
B 0.6%
(4R,6R,10S)-4,10-dimethyl-6-(1‘-hydroxyisopropyl)-1-en-3,4,5,6,7,8-hexahydronaphthalen-2-one
20489-50-3

(4R,6R,10S)-4,10-dimethyl-6-(1‘-hydroxyisopropyl)-1-en-3,4,5,6,7,8-hexahydronaphthalen-2-one

(+)-nootkatone
4674-50-4

(+)-nootkatone

Conditions
ConditionsYield
With pyridine; trichlorophosphate
(4R,4aS,6R)-4,4a,5,6,7,8-Hexahydro-4,4a-dimethyl-6-(1-chloro-1-methylethyl)-2(3H)-naphthalenone
72453-44-2

(4R,4aS,6R)-4,4a,5,6,7,8-Hexahydro-4,4a-dimethyl-6-(1-chloro-1-methylethyl)-2(3H)-naphthalenone

A

(4R,4aS)-(+)-4,4a-dimethyl-6-isopropylidene-4,4a,5,6,7,8-hexahydro-(3H)-naphthalen-2-one
15764-04-2

(4R,4aS)-(+)-4,4a-dimethyl-6-isopropylidene-4,4a,5,6,7,8-hexahydro-(3H)-naphthalen-2-one

B

(+)-nootkatone
4674-50-4

(+)-nootkatone

Conditions
ConditionsYield
With aluminum oxide In hexane at 60℃; for 24h;

A

(2R,4aR,8R,8aS)-2-Isopropenyl-8,8a-dimethyl-1,3,4,7,8,8a-hexahydro-2H-naphthalen-4a-ol
50763-63-8

(2R,4aR,8R,8aS)-2-Isopropenyl-8,8a-dimethyl-1,3,4,7,8,8a-hexahydro-2H-naphthalen-4a-ol

B

4α,4aα-dimethyl-6β-(1-methylethenyl)-2,3,4,4a,5,6,7,8-octahydronaphthalene-2β-ol
50763-66-1

4α,4aα-dimethyl-6β-(1-methylethenyl)-2,3,4,4a,5,6,7,8-octahydronaphthalene-2β-ol

C

4α,4aα-dimethyl-6β-(1-methylethenyl)-2,3,4,4a,5,6,7,8-octahydronaphthalene-2α-ol
50763-67-2

4α,4aα-dimethyl-6β-(1-methylethenyl)-2,3,4,4a,5,6,7,8-octahydronaphthalene-2α-ol

D

(+)-nootkatone
4674-50-4

(+)-nootkatone

E

(4R,4aS,6R)-6-Isopropenyl-4,4a-dimethyl-1,2,3,4,4a,5,6,7-octahydro-naphthalen-1-ol
32420-34-1, 32420-35-2, 50763-64-9, 50763-65-0, 53643-08-6

(4R,4aS,6R)-6-Isopropenyl-4,4a-dimethyl-1,2,3,4,4a,5,6,7-octahydro-naphthalen-1-ol

Conditions
ConditionsYield
Mechanism; Product distribution; multistep reaction: photooxygenation + reduction; reaction with triplet and singlet oxygen;
2-Methyl-4-isopropenyl-6-n-butylthiomethylen-cyclohexanon
67779-29-7

2-Methyl-4-isopropenyl-6-n-butylthiomethylen-cyclohexanon

trans-3-penten-2-one
3102-33-8

trans-3-penten-2-one

(+)-nootkatone
4674-50-4

(+)-nootkatone

Conditions
ConditionsYield
(i) KOtBu, tBuOH, (ii) aq. KOH; Multistep reaction;
tert.-butylhydroperoxide
75-91-2

tert.-butylhydroperoxide

A

(+)-nootkatone
4674-50-4

(+)-nootkatone

B

2β-t-butylperoxy-4α,5α,7β-eremophila-1(10),11-diene

2β-t-butylperoxy-4α,5α,7β-eremophila-1(10),11-diene

C

9β-t-butylperoxy-2-oxo-4α,5α,7β-eremophila-1(10),11-diene

9β-t-butylperoxy-2-oxo-4α,5α,7β-eremophila-1(10),11-diene

Conditions
ConditionsYield
With copper(l) iodide In acetonitrile at 50℃; for 18h; Substitution; oxydation;A 260 mg
B 31 mg
C n/a

A

4α,4aα-dimethyl-6β-(1-methylethenyl)-2,3,4,4a,5,6,7,8-octahydronaphthalene-2α-ol
50763-67-2

4α,4aα-dimethyl-6β-(1-methylethenyl)-2,3,4,4a,5,6,7,8-octahydronaphthalene-2α-ol

B

(+)-nootkatone
4674-50-4

(+)-nootkatone

C

(-)-2-(2R)-(1,2,3,4,6,7,8,8a-octahydro-8α,8aβ-dimethyl-2α-naphthalenyl)-2-propen-1-ol

(-)-2-(2R)-(1,2,3,4,6,7,8,8a-octahydro-8α,8aβ-dimethyl-2α-naphthalenyl)-2-propen-1-ol

Conditions
ConditionsYield
With chicory; enzymes from roots of Cichorium intybus L; NADPH In ethanol for 1h; pH=7.5; Product distribution; Further Variations:; Reagents;

A

(+)-(4R,5S,7R,11S)-11,12-epoksynootkatone

(+)-(4R,5S,7R,11S)-11,12-epoksynootkatone

B

4α,4aα-dimethyl-6β-(1-methylethenyl)-2,3,4,4a,5,6,7,8-octahydronaphthalene-2β-ol
50763-66-1

4α,4aα-dimethyl-6β-(1-methylethenyl)-2,3,4,4a,5,6,7,8-octahydronaphthalene-2β-ol

C

(+)-nootkatone
4674-50-4

(+)-nootkatone

D

(1aR,4R,4aS,6R,8aS)-4,4a-dimethyl-6-(prop-1-en-2-yl)octahydro-1aH-naphtho[1,8a-b]oxirene

(1aR,4R,4aS,6R,8aS)-4,4a-dimethyl-6-(prop-1-en-2-yl)octahydro-1aH-naphtho[1,8a-b]oxirene

Conditions
ConditionsYield
With 1,4-dihydronicotinamide adenine dinucleotide; cytochrome P450BM-3 Product distribution; Enzyme kinetics; Further Variations:; Reagents;

A

4α,4aα-dimethyl-6β-(1-methylethenyl)-2,3,4,4a,5,6,7,8-octahydronaphthalene-2α-ol
50763-67-2

4α,4aα-dimethyl-6β-(1-methylethenyl)-2,3,4,4a,5,6,7,8-octahydronaphthalene-2α-ol

B

(+)-nootkatone
4674-50-4

(+)-nootkatone

C

9α-hydroxy-2-oxo-4α,5α,7β-eremophila-1(10),11-diene
226546-99-2

9α-hydroxy-2-oxo-4α,5α,7β-eremophila-1(10),11-diene

Conditions
ConditionsYield
With 1,4-dihydronicotinamide adenine dinucleotide; cytochrome P450cam In ethanol Product distribution; Enzyme kinetics; Further Variations:; Reagents;

A

4α,4aα-dimethyl-6β-(1-methylethenyl)-2,3,4,4a,5,6,7,8-octahydronaphthalene-2β-ol
50763-66-1

4α,4aα-dimethyl-6β-(1-methylethenyl)-2,3,4,4a,5,6,7,8-octahydronaphthalene-2β-ol

B

4α,4aα-dimethyl-6β-(1-methylethenyl)-2,3,4,4a,5,6,7,8-octahydronaphthalene-2α-ol
50763-67-2

4α,4aα-dimethyl-6β-(1-methylethenyl)-2,3,4,4a,5,6,7,8-octahydronaphthalene-2α-ol

C

(+)-nootkatone
4674-50-4

(+)-nootkatone

Conditions
ConditionsYield
With Botryosphaeria dothidea (Ume BD8398II); Czapek-pepton medium at 30℃; for 168h; pH=7.0;A 31 % Chromat.
B 18 % Chromat.
C 43 % Chromat.
4α,4aα-dimethyl-6β-(1-methylethenyl)-2,3,4,4a,5,6,7,8-octahydronaphthalene-2β-ol
50763-66-1

4α,4aα-dimethyl-6β-(1-methylethenyl)-2,3,4,4a,5,6,7,8-octahydronaphthalene-2β-ol

(+)-nootkatone
4674-50-4

(+)-nootkatone

Conditions
ConditionsYield
With Chlorella pyrenoidosa for 24h;
4α,4aα-dimethyl-6β-(1-methylethenyl)-2,3,4,4a,5,6,7,8-octahydronaphthalene-2α-ol
50763-67-2

4α,4aα-dimethyl-6β-(1-methylethenyl)-2,3,4,4a,5,6,7,8-octahydronaphthalene-2α-ol

(+)-nootkatone
4674-50-4

(+)-nootkatone

Conditions
ConditionsYield
With Chlorella fusca for 24h;
Multi-step reaction with 2 steps
1: 42 percent / p-nitrobenzoic acid; triphenylphosphine; diethyl azodicarboxylate
2: Chlorella pyrenoidosa / 24 h
View Scheme
(1R,5S)-(+)-nopinone
38651-65-9

(1R,5S)-(+)-nopinone

(+)-nootkatone
4674-50-4

(+)-nootkatone

Conditions
ConditionsYield
Multi-step reaction with 8 steps
1: 88 percent / triethylamine / dimethylformamide / 24 h / 95 °C
2: 96 percent / TiCl4 / CH2Cl2 / 1.5 h / -78 °C
3: 90 percent / p-toluenesulfonic acid / benzene / 2 h / Heating
4: 81 percent / TiCl4 / CH2Cl2
5: 71 percent / NaNH2 / benzene
6: 1.) O3; 2.) Zn/CH3COOH / 1.) -78 deg C, 30 min; 2.) room temperature overnight.
7: 73 percent / HCl / acetic acid / 21 h / Ambient temperature
8: Al2O3 / hexane / 24 h / 60 °C
View Scheme
Multi-step reaction with 8 steps
1: 88 percent / triethylamine / dimethylformamide / 24 h / 95 °C
2: 96 percent / TiCl4 / CH2Cl2 / 1.5 h / -78 °C
3: 90 percent / p-toluenesulfonic acid / benzene / 2 h / Heating
4: 89 percent / TiCl4 / CH2Cl2 / 2 h / -78 °C
5: 72 percent / NaNH2 / benzene / 1.) reflux, 5 h; 2.) 45 deg C, 17.5 h.
6: 1.) mercuric acetate; 2.) LiCl, PdCl2, CuCl2. / 1.) room temperature, CH3OH, 15 min; 2.) 55 deg C, CH3OH, 1 hour.
7: 73 percent / HCl / acetic acid / 21 h / Ambient temperature
8: Al2O3 / hexane / 24 h / 60 °C
View Scheme
Multi-step reaction with 7 steps
1: 55 percent / N-methylaniline, EtMgBr / benzene; diethyl ether / 1 h / 0 °C
2: 90 percent / p-toluenesulfonic acid / benzene / 2 h / Heating
3: 81 percent / TiCl4 / CH2Cl2
4: 71 percent / NaNH2 / benzene
5: 1.) O3; 2.) Zn/CH3COOH / 1.) -78 deg C, 30 min; 2.) room temperature overnight.
6: 73 percent / HCl / acetic acid / 21 h / Ambient temperature
7: Al2O3 / hexane / 24 h / 60 °C
View Scheme
(1R,3S,5R)-3-<(1R)-1-Methyl-3-oxobutyl>-3,6,6-trimethylbicyclo<3.1.1>heptan-2-one
72453-41-9

(1R,3S,5R)-3-<(1R)-1-Methyl-3-oxobutyl>-3,6,6-trimethylbicyclo<3.1.1>heptan-2-one

(+)-nootkatone
4674-50-4

(+)-nootkatone

Conditions
ConditionsYield
Multi-step reaction with 2 steps
1: 73 percent / HCl / acetic acid / 21 h / Ambient temperature
2: Al2O3 / hexane / 24 h / 60 °C
View Scheme
Multi-step reaction with 2 steps
1: acetic acid; hydrogenchloride / 21 h / 20 °C / Inert atmosphere
2: acetic acid; sodium acetate / 2 h / 100 °C
View Scheme
(1R,3R,5R)-6,6-Dimethyl-3-(1-hydroxyethyl)bicyclo<3.1.1>heptan-2-one
72453-38-4, 72541-05-0, 73068-69-6

(1R,3R,5R)-6,6-Dimethyl-3-(1-hydroxyethyl)bicyclo<3.1.1>heptan-2-one

(+)-nootkatone
4674-50-4

(+)-nootkatone

Conditions
ConditionsYield
Multi-step reaction with 6 steps
1: 90 percent / p-toluenesulfonic acid / benzene / 2 h / Heating
2: 81 percent / TiCl4 / CH2Cl2
3: 71 percent / NaNH2 / benzene
4: 1.) O3; 2.) Zn/CH3COOH / 1.) -78 deg C, 30 min; 2.) room temperature overnight.
5: 73 percent / HCl / acetic acid / 21 h / Ambient temperature
6: Al2O3 / hexane / 24 h / 60 °C
View Scheme
Multi-step reaction with 6 steps
1: 90 percent / p-toluenesulfonic acid / benzene / 2 h / Heating
2: 89 percent / TiCl4 / CH2Cl2 / 2 h / -78 °C
3: 72 percent / NaNH2 / benzene / 1.) reflux, 5 h; 2.) 45 deg C, 17.5 h.
4: 1.) mercuric acetate; 2.) LiCl, PdCl2, CuCl2. / 1.) room temperature, CH3OH, 15 min; 2.) 55 deg C, CH3OH, 1 hour.
5: 73 percent / HCl / acetic acid / 21 h / Ambient temperature
6: Al2O3 / hexane / 24 h / 60 °C
View Scheme
(1R,5R)-6,6-Dimethyl-2-<(trimethylsilyl)oxy>bicyclo<3.1.1>hept-2-ene
72453-33-9

(1R,5R)-6,6-Dimethyl-2-<(trimethylsilyl)oxy>bicyclo<3.1.1>hept-2-ene

(+)-nootkatone
4674-50-4

(+)-nootkatone

Conditions
ConditionsYield
Multi-step reaction with 7 steps
1: 96 percent / TiCl4 / CH2Cl2 / 1.5 h / -78 °C
2: 90 percent / p-toluenesulfonic acid / benzene / 2 h / Heating
3: 81 percent / TiCl4 / CH2Cl2
4: 71 percent / NaNH2 / benzene
5: 1.) O3; 2.) Zn/CH3COOH / 1.) -78 deg C, 30 min; 2.) room temperature overnight.
6: 73 percent / HCl / acetic acid / 21 h / Ambient temperature
7: Al2O3 / hexane / 24 h / 60 °C
View Scheme
Multi-step reaction with 7 steps
1: 96 percent / TiCl4 / CH2Cl2 / 1.5 h / -78 °C
2: 90 percent / p-toluenesulfonic acid / benzene / 2 h / Heating
3: 89 percent / TiCl4 / CH2Cl2 / 2 h / -78 °C
4: 72 percent / NaNH2 / benzene / 1.) reflux, 5 h; 2.) 45 deg C, 17.5 h.
5: 1.) mercuric acetate; 2.) LiCl, PdCl2, CuCl2. / 1.) room temperature, CH3OH, 15 min; 2.) 55 deg C, CH3OH, 1 hour.
6: 73 percent / HCl / acetic acid / 21 h / Ambient temperature
7: Al2O3 / hexane / 24 h / 60 °C
View Scheme
(1R,3S,5S)-6,6-Dimethyl-3-<1-methyl-3-butenyl>bicyclo<3.1.1>heptan-2-one
72453-39-5, 72541-06-1, 73068-72-1, 73068-73-2, 75657-63-5

(1R,3S,5S)-6,6-Dimethyl-3-<1-methyl-3-butenyl>bicyclo<3.1.1>heptan-2-one

(+)-nootkatone
4674-50-4

(+)-nootkatone

Conditions
ConditionsYield
Multi-step reaction with 4 steps
1: 72 percent / NaNH2 / benzene / 1.) reflux, 5 h; 2.) 45 deg C, 17.5 h.
2: 1.) mercuric acetate; 2.) LiCl, PdCl2, CuCl2. / 1.) room temperature, CH3OH, 15 min; 2.) 55 deg C, CH3OH, 1 hour.
3: 73 percent / HCl / acetic acid / 21 h / Ambient temperature
4: Al2O3 / hexane / 24 h / 60 °C
View Scheme
(1R,3S,5S)-6,6-Dimethyl-3-<1-methyl-3-methyl-3-butenyl>bicyclo<3.1.1.>heptan-2-one
72453-42-0, 72541-07-2, 73068-70-9, 73068-71-0, 75657-65-7

(1R,3S,5S)-6,6-Dimethyl-3-<1-methyl-3-methyl-3-butenyl>bicyclo<3.1.1.>heptan-2-one

(+)-nootkatone
4674-50-4

(+)-nootkatone

Conditions
ConditionsYield
Multi-step reaction with 4 steps
1: 71 percent / NaNH2 / benzene
2: 1.) O3; 2.) Zn/CH3COOH / 1.) -78 deg C, 30 min; 2.) room temperature overnight.
3: 73 percent / HCl / acetic acid / 21 h / Ambient temperature
4: Al2O3 / hexane / 24 h / 60 °C
View Scheme
(1R,3S,5R)-3-<1-Methyl-3-butenyl>-3,6,6-trimethylbicyclo<3.1.1>heptan-2-one
72453-40-8, 72521-66-5, 75657-64-6

(1R,3S,5R)-3-<1-Methyl-3-butenyl>-3,6,6-trimethylbicyclo<3.1.1>heptan-2-one

(+)-nootkatone
4674-50-4

(+)-nootkatone

Conditions
ConditionsYield
Multi-step reaction with 3 steps
1: 1.) mercuric acetate; 2.) LiCl, PdCl2, CuCl2. / 1.) room temperature, CH3OH, 15 min; 2.) 55 deg C, CH3OH, 1 hour.
2: 73 percent / HCl / acetic acid / 21 h / Ambient temperature
3: Al2O3 / hexane / 24 h / 60 °C
View Scheme
(1R,3S,5R)-3-<1-Methyl-3-methyl-3-butenyl>-3,6,6-trimethylbicyclo<3.1.1>heptan-2-one
72453-43-1, 72541-08-3, 75657-66-8

(1R,3S,5R)-3-<1-Methyl-3-methyl-3-butenyl>-3,6,6-trimethylbicyclo<3.1.1>heptan-2-one

(+)-nootkatone
4674-50-4

(+)-nootkatone

Conditions
ConditionsYield
Multi-step reaction with 3 steps
1: 1.) O3; 2.) Zn/CH3COOH / 1.) -78 deg C, 30 min; 2.) room temperature overnight.
2: 73 percent / HCl / acetic acid / 21 h / Ambient temperature
3: Al2O3 / hexane / 24 h / 60 °C
View Scheme
(1R,5R)-6,6-Dimethyl-3-(Z)-ethylidenebicyclo<3.1.1>heptan-2-one
73068-31-2

(1R,5R)-6,6-Dimethyl-3-(Z)-ethylidenebicyclo<3.1.1>heptan-2-one

(+)-nootkatone
4674-50-4

(+)-nootkatone

Conditions
ConditionsYield
Multi-step reaction with 6 steps
1: p-toluenesulfonic acid monohydrate / ethanol / 3 h / Ambient temperature
2: 81 percent / TiCl4 / CH2Cl2
3: 71 percent / NaNH2 / benzene
4: 1.) O3; 2.) Zn/CH3COOH / 1.) -78 deg C, 30 min; 2.) room temperature overnight.
5: 73 percent / HCl / acetic acid / 21 h / Ambient temperature
6: Al2O3 / hexane / 24 h / 60 °C
View Scheme
Multi-step reaction with 6 steps
1: p-toluenesulfonic acid monohydrate / ethanol / 3 h / Ambient temperature
2: 89 percent / TiCl4 / CH2Cl2 / 2 h / -78 °C
3: 72 percent / NaNH2 / benzene / 1.) reflux, 5 h; 2.) 45 deg C, 17.5 h.
4: 1.) mercuric acetate; 2.) LiCl, PdCl2, CuCl2. / 1.) room temperature, CH3OH, 15 min; 2.) 55 deg C, CH3OH, 1 hour.
5: 73 percent / HCl / acetic acid / 21 h / Ambient temperature
6: Al2O3 / hexane / 24 h / 60 °C
View Scheme
(1R,5R)-6,6-Dimethyl-3-(E)-ethylidenebicyclo<3.1.1>heptan-2-one
72453-37-3

(1R,5R)-6,6-Dimethyl-3-(E)-ethylidenebicyclo<3.1.1>heptan-2-one

(+)-nootkatone
4674-50-4

(+)-nootkatone

Conditions
ConditionsYield
Multi-step reaction with 5 steps
1: 81 percent / TiCl4 / CH2Cl2
2: 71 percent / NaNH2 / benzene
3: 1.) O3; 2.) Zn/CH3COOH / 1.) -78 deg C, 30 min; 2.) room temperature overnight.
4: 73 percent / HCl / acetic acid / 21 h / Ambient temperature
5: Al2O3 / hexane / 24 h / 60 °C
View Scheme
Multi-step reaction with 5 steps
1: 89 percent / TiCl4 / CH2Cl2 / 2 h / -78 °C
2: 72 percent / NaNH2 / benzene / 1.) reflux, 5 h; 2.) 45 deg C, 17.5 h.
3: 1.) mercuric acetate; 2.) LiCl, PdCl2, CuCl2. / 1.) room temperature, CH3OH, 15 min; 2.) 55 deg C, CH3OH, 1 hour.
4: 73 percent / HCl / acetic acid / 21 h / Ambient temperature
5: Al2O3 / hexane / 24 h / 60 °C
View Scheme
Multi-step reaction with 6 steps
1.1: magnesium / tetrahydrofuran / 0.5 h / Reflux
1.2: -78 °C
2.1: potassium hydride; 18-crown-6 ether / tetrahydrofuran / 6 h / 0 °C / Inert atmosphere
3.1: sodium amide / benzene / 5 h / Inert atmosphere; Reflux
3.2: 17.5 h / 45 °C
4.1: acetic acid; zinc / dichloromethane / 5 h / -78 - 30 °C / Inert atmosphere
5.1: acetic acid; hydrogenchloride / 21 h / 20 °C / Inert atmosphere
6.1: acetic acid; sodium acetate / 2 h / 100 °C
View Scheme
2-Methyl-4-isopropenyl-6-hydroxymethylen-cyclohexanon
67779-36-6

2-Methyl-4-isopropenyl-6-hydroxymethylen-cyclohexanon

(+)-nootkatone
4674-50-4

(+)-nootkatone

Conditions
ConditionsYield
Multi-step reaction with 2 steps
1: TsOH
2: (i) KOtBu, tBuOH, (ii) aq. KOH
View Scheme
(+)-(2R,4R)-2-methyl-4-isopropenylcyclohexanone
118710-90-0

(+)-(2R,4R)-2-methyl-4-isopropenylcyclohexanone

(+)-nootkatone
4674-50-4

(+)-nootkatone

Conditions
ConditionsYield
Multi-step reaction with 3 steps
1: NaOMe, MeOH
2: TsOH
3: (i) KOtBu, tBuOH, (ii) aq. KOH
View Scheme
(+)-nootkatone
4674-50-4

(+)-nootkatone

4α,4aα-dimethyl-6β-(1-methylethenyl)-2,3,4,4a,5,6,7,8-octahydronaphthalene-2-ol
840474-83-1

4α,4aα-dimethyl-6β-(1-methylethenyl)-2,3,4,4a,5,6,7,8-octahydronaphthalene-2-ol

Conditions
ConditionsYield
With sodium tetrahydroborate In methanol at 0℃; for 4.33333h; Time;98.3%
(+)-nootkatone
4674-50-4

(+)-nootkatone

6-isopropyl-4,4a-dimethyl-4a,5,6,7,8,8a-hexahydronaphthalen-2(1H)-one
5195-69-7

6-isopropyl-4,4a-dimethyl-4a,5,6,7,8,8a-hexahydronaphthalen-2(1H)-one

Conditions
ConditionsYield
With Wilkinson's catalyst; hydrogen In benzene at 20℃; for 8h;96%
With Wilkinson's catalyst; hydrogen In benzene for 14h; Ambient temperature;81%
With Wilkinson's catalyst; hydrogen In benzene for 14h; Ambient temperature;81%
With tris(triphenylphosphine)rhodium(l) chloride; hydrogen In benzene for 8h;
With Wilkinson's catalyst; hydrogen under 5250.53 Torr; for 2h;
(+)-nootkatone
4674-50-4

(+)-nootkatone

6-isopropenyl-4,4a-dimethyl-3,4,5,6,7,8-hexahydro-1aH-naphtho[1,8a-b]oxiren-2-one
439112-90-0

6-isopropenyl-4,4a-dimethyl-3,4,5,6,7,8-hexahydro-1aH-naphtho[1,8a-b]oxiren-2-one

Conditions
ConditionsYield
With dihydrogen peroxide; sodium hydroxide96%
(+)-nootkatone
4674-50-4

(+)-nootkatone

lithium tetramethyl alanate
14281-94-8, 32661-49-7, 32661-50-0

lithium tetramethyl alanate

(4R,4aS,6R)-6-Isopropenyl-2,4,4a-trimethyl-2,3,4,4a,5,6,7,8-octahydro-naphthalen-2-ol

(4R,4aS,6R)-6-Isopropenyl-2,4,4a-trimethyl-2,3,4,4a,5,6,7,8-octahydro-naphthalen-2-ol

Conditions
ConditionsYield
copper(I) bromide In tetrahydrofuran; diethyl ether 0.5 h at 0 deg C, 6 h at room temp.;94%
(+)-nootkatone
4674-50-4

(+)-nootkatone

acetylenemagnesium bromide
4301-14-8

acetylenemagnesium bromide

(3R,4aS,5R)-7-ethynyl-4a,5-dimethyl-3-(prop-1-en-2-yl)-1,2,3,4,4a,5-hexahydronaphthalene
1449115-27-8

(3R,4aS,5R)-7-ethynyl-4a,5-dimethyl-3-(prop-1-en-2-yl)-1,2,3,4,4a,5-hexahydronaphthalene

Conditions
ConditionsYield
Stage #1: (+)-nootkatone With N,N-phenylbistrifluoromethane-sulfonimide; lithium hexamethyldisilazane at -78℃; Inert atmosphere;
Stage #2: acetylenemagnesium bromide With tetrakis(triphenylphosphine) palladium(0) at 20℃; Inert atmosphere;
94%
(+)-nootkatone
4674-50-4

(+)-nootkatone

fluoro-(+)-nootkatone

fluoro-(+)-nootkatone

Conditions
ConditionsYield
With HO4S(1-)*K(1+)*13FH In 1,2-dichloro-ethane at 0 - 20℃; for 2h; regioselective reaction;94%
(+)-nootkatone
4674-50-4

(+)-nootkatone

(+)-cis-4,4a-dimethyl-4,4a,5,6,7,8-hexahydro-2-(3H)-naphthalenone
51557-49-4

(+)-cis-4,4a-dimethyl-4,4a,5,6,7,8-hexahydro-2-(3H)-naphthalenone

Conditions
ConditionsYield
Stage #1: (+)-nootkatone With methanol; ozone
Stage #2: With ferrous(II) sulfate heptahydrate; thiophenol at -78 - 20℃; for 0.5h;
94%
(+)-nootkatone
4674-50-4

(+)-nootkatone

4α,4aα-dimethyl-6β-(1-methylethenyl)-2,3,4,4a,5,6,7,8-octahydronaphthalene-2α-ol
50763-67-2

4α,4aα-dimethyl-6β-(1-methylethenyl)-2,3,4,4a,5,6,7,8-octahydronaphthalene-2α-ol

Conditions
ConditionsYield
With sodium tetrahydroborate; cerium(III) chloride heptahydrate In methanol at 23℃; for 0.166667h; Inert atmosphere;91%
With sodium tetrahydroborate; cerium(III) chloride87%
With sodium tetrahydroborate; cerium(III) chloride In ethanol at 20℃; for 1h;82.7%
(+)-nootkatone
4674-50-4

(+)-nootkatone

C15H22Cl2

C15H22Cl2

Conditions
ConditionsYield
With C26H24Cl2P2(2+)*CH2Cl2*2C2H4Cl2*Cl5Sb(2-); water In nitromethane at 23℃; for 16h; Inert atmosphere;91%
trimethylaluminum
75-24-1

trimethylaluminum

(+)-nootkatone
4674-50-4

(+)-nootkatone

A

(3R,4aS,5R)-3-Isopropenyl-4a,5,7-trimethyl-1,2,3,4,4a,5-hexahydro-naphthalene

(3R,4aS,5R)-3-Isopropenyl-4a,5,7-trimethyl-1,2,3,4,4a,5-hexahydro-naphthalene

B

(4R,4aS,6R)-6-Isopropenyl-4,4a,8a-trimethyl-octahydro-naphthalen-2-one

(4R,4aS,6R)-6-Isopropenyl-4,4a,8a-trimethyl-octahydro-naphthalen-2-one

Conditions
ConditionsYield
copper(I) bromide In tetrahydrofuran for 22h; Ambient temperature;A 90%
B 2%
bis(acetylacetonate)nickel(II) In tetrahydrofuran for 4.5h; Ambient temperature;A 17%
B 77%
(+)-nootkatone
4674-50-4

(+)-nootkatone

acetylenemagnesium bromide
4301-14-8

acetylenemagnesium bromide

Conditions
ConditionsYield
Stage #1: (+)-nootkatone With 2,6-dimethylpyridine; trifluoromethylsulfonic anhydride at 20℃; Inert atmosphere;
Stage #2: acetylenemagnesium bromide With tetrakis(triphenylphosphine) palladium(0) at 20℃; Inert atmosphere;
88%

4674-50-4Relevant articles and documents

Preparation of (-)-aristolochene from (+)-valencene: Absolute configuration of (+)-aristolochene from Aspergillus terreus

Cane,Salaski,Prabhakaran

, p. 1943 - 1944 (1990)

The absolute configuration of (+)-aristolochene (1a), isolated from Aspergillus terreus, has been established by direct comparison with a sample of (-)-aristolochene (1b) prepared from (+)-valencene (2).

Highly efficient production of nootkatone, the grapefruit aroma from valencene, by biotransformation

Furusawa, Mai,Hashimoto, Toshihiro,Noma, Yoshiaki,Asakawa, Yoshinori

, p. 1513 - 1514 (2005)

Nootkatone (2), the most important and expensive aromatic of grapefruit, decreases the somatic fat ratio, and thus its demand is increasing in the cosmetic and fiber sectors. A sesquiterpene hydrocarbon, (+)-valencene (1), which is cheaply obtained from Valencia orange, was biotransformed by the green algae Chlorella species and fungi such as Mucor species, Botryosphaeria dothidea, and Botryodiplodia theobromae to afford nootkatone (2) in high yield.

Dastur

, p. 6509 (1973)

Manganese complex catalyst for valencene oxidation: The first use of metalloporphyrins for the selective production of nootkatone

DeFreitas-Silva, Gilson,Moreira Meireles, Alexandre,Robles-Azocar, Patrícia,da Silva, Vinicius Santos,de Melo, Carla Nunes

, (2021)

This work describes the oxidation of valencene, a sesquiterpene easily obtained from citrus fruits, and responsible for the fresh odor of oranges. The reactions were catalyzed by manganese porphyrins derived from 5,10,15,20-tetrakis(3,5-dimethoxyphenyl)porphyrin (H2T3,5DMPP): [MnIII(T3,5DMPP)Cl] (MnP1) and [MnIII(Br12T3,5DMPP)Cl] (MnP2), using iodosylbenzene (PhIO), iodobenzene diacetate [PhI(OAc)2], and molecular oxygen as oxidants. The systems MnP1/O2/acetonitrile and MnP1/O2/diethyl carbonate led to higher yields of valencene oxidation products (44% and 48%, respectively) as compared with MnP2 (9% and 7%, respectively), with nootkatone being the major product. The addition of a small amount of imidazole (molar MnP1: imidazole ratio of 1:5) to the MnP1/O2/diethyl carbonate led to superior yields (64%) as compared with systems without the additive. A mechanism for the formation of the two products obtained was also proposed.

METHOD FOR THE MANUFACTURE OF α,β-UNSATURATED KETONES

-

Page/Page column 13, (2021/10/30)

A method for the manufacture of an α,β-unsaturated ketone, which method comprises oxidizing an alkene having -CH2- adjacent a carbon-carbon double bond to α,β-unsaturated ketone by passing air or oxygen through a solution of the hydrocarbon containing a catalyst consisting of N-hydroxyphthalimide (NHPI) and cobalt diacetate tetrahydrate at standard temperature and pressure during a period of at least 12 hours.

PROCESS FOR THE PREPARATION OF NOOTKATONE BY USING A IRON (III) PORPHYRIN COMPLEX CATALYST

-

Page/Page column 5-7, (2020/12/29)

An allylic oxidation process comprising: forming a mixture containing valencene and an iron (lll)-X porphyrin complex catalyst in a sustainable solvent, introducing molecular oxygen into the mixture, and effecting allylic oxidation to produce nootkatone.

Post a RFQ

Enter 15 to 2000 letters.Word count: 0 letters

Attach files(File Format: Jpeg, Jpg, Gif, Png, PDF, PPT, Zip, Rar,Word or Excel Maximum File Size: 3MB)

1

What can I do for you?
Get Best Price

Get Best Price for 4674-50-4