Welcome to LookChem.com Sign In|Join Free

CAS

  • or

488-31-3

Post Buying Request

488-31-3 Suppliers

Recommended suppliersmore

  • Product
  • FOB Price
  • Min.Order
  • Supply Ability
  • Supplier
  • Contact Supplier

488-31-3 Usage

Uses

Pentaric Acid (cas# 33012-62-3) is used as a modifier in the microstructure for transcutaneous and intracutaneous drug delivery of cyclosporinA.

Check Digit Verification of cas no

The CAS Registry Mumber 488-31-3 includes 6 digits separated into 3 groups by hyphens. The first part of the number,starting from the left, has 3 digits, 4,8 and 8 respectively; the second part has 2 digits, 3 and 1 respectively.
Calculate Digit Verification of CAS Registry Number 488-31:
(5*4)+(4*8)+(3*8)+(2*3)+(1*1)=83
83 % 10 = 3
So 488-31-3 is a valid CAS Registry Number.

488-31-3SDS

SAFETY DATA SHEETS

According to Globally Harmonized System of Classification and Labelling of Chemicals (GHS) - Sixth revised edition

Version: 1.0

Creation Date: Aug 16, 2017

Revision Date: Aug 16, 2017

1.Identification

1.1 GHS Product identifier

Product name xylaric acid

1.2 Other means of identification

Product number -
Other names D-xylo-trihydroxyglutaric acid

1.3 Recommended use of the chemical and restrictions on use

Identified uses For industry use only.
Uses advised against no data available

1.4 Supplier's details

1.5 Emergency phone number

Emergency phone number -
Service hours Monday to Friday, 9am-5pm (Standard time zone: UTC/GMT +8 hours).

More Details:488-31-3 SDS

488-31-3Relevant articles and documents

PROCESSES FOR PREPARING ALDARIC, ALDONIC, AND URONIC ACIDS

-

, (2021/05/29)

Various processes for preparing aldaric acids, aldonic acids, uronic acids, and/or lactone(s) thereof are described. For example, processes for preparing a C2-C7 aldaric acid and/or lactone(s) thereof by the catalytic oxidation of a C2-C7 aldonic acid and/or lactone(s) thereof and/or a C2-C7 aldose are described.

Bimetallic AuPt/TiO2Catalysts for Direct Oxidation of Glucose and Gluconic Acid to Tartaric Acid in the Presence of Molecular O2

Ding, Jie,Jin, Xin,Lai, Linyi,Liu, Mengyuan,Sun, Yu,Wang, Jinyao,Xia, Qi,Yan, Hao,Yang, Chaohe,Zhang, Guangyu,Zhang, Wenxiang

, p. 10932 - 10945 (2020/11/23)

Tartaric acid is an important industrial building block in the food and polymer industry. However, green manufacture of tartaric acid remains a grand challenge in this area. To date, chemical synthesis from nitric acid-facilitated glucose oxidation leads to only a one-pot aqueous-phase oxidation of glucose and gluconic acid using bimetallic AuPt/TiO2 catalysts in the presence of molecular O2, with ~50% yield toward tartaric acid at 110 °C and 2 MPa. Structural characterization and density functional theory (DFT) calculation reveal that the lattice mismatch between fcc Pt and bcc Au induces the formation of twinned boundaries in nanoclusters and Jahn-Teller distortion in an electronic field. Such structural and electronic reconfiguration leads to enhanced σ-activation of the C-H bond competing with π-πelectronic sharing of the C═O bond on the catalyst surface. As a result, both C-H (oxidation) and C-C (decarboxylation) bond cleavage reactions synergistically occur on the surface of bimetallic AuPt/TiO2 catalysts. Therefore, glucose and gluconic acid can be efficiently transformed into tartaric acid in a base-free medium. Lattice distortion-enhanced reconfiguration of the electronic field in Pt-based bimetallic nanocatalysts can be utilized in many other energy and environmental fields for catalyzing synergistic oxidation reactions.

Rate-limiting steps in bromide-free TEMPO-mediated oxidation of cellulose - Quantification of the N-Oxoammonium cation by iodometric titration and UV-vis spectroscopy

P??kk?nen, Timo,Bertinetto, Carlo,P?nni, Raili,Tummala, Gopi Krishna,Nuopponen, Markus,Vuorinen, Tapani

, p. 532 - 538 (2015/10/28)

A iodometric titration method was introduced to study the conversion of 2,2,6,6-tetramethyl-1-piperidinyloxy (TEMPO) to the corresponding N-oxoammonium cation (TEMPO+) by hypochlorite in the absence and presence of bromide ion. The validity of the titration was verified with UV-vis spectroscopy combined with a multivariate curve resolution (MCR) algorithm to calculate the concentrations and spectral signatures of the pure components (i.e., TEMPO, Cl(+1) and TEMPO+). The formation of the oxoammonium cation was successfully followed during the activation of TEMPO by HOCl and HOBr. It was found that HOBr is a more effective activator for TEMPO than HOCl is. Moreover, the importance of a separate activation step for TEMPO with bromide-free TEMPO oxidations could be identified with this titration method. The content of TEMPO+ was also monitored during the TEMPO-mediated oxidation of a cellulosic pulp by hypochlorite in the absence and presence of bromide. It was found that the oxidation of the alcoholic groups by TEMPO+ was generally the rate-determining step and much slower than the regeneration of TEMPO+ through oxidation of the hydroxylamine by HOCl and HOBr. However, at high pH the latter reaction became rate-limiting.

Post a RFQ

Enter 15 to 2000 letters.Word count: 0 letters

Attach files(File Format: Jpeg, Jpg, Gif, Png, PDF, PPT, Zip, Rar,Word or Excel Maximum File Size: 3MB)

1

What can I do for you?
Get Best Price

Get Best Price for 488-31-3