Welcome to LookChem.com Sign In|Join Free

CAS

  • or

490-99-3

Post Buying Request

490-99-3 Suppliers

Recommended suppliersmore

  • Product
  • FOB Price
  • Min.Order
  • Supply Ability
  • Supplier
  • Contact Supplier

490-99-3 Usage

Check Digit Verification of cas no

The CAS Registry Mumber 490-99-3 includes 6 digits separated into 3 groups by hyphens. The first part of the number,starting from the left, has 3 digits, 4,9 and 0 respectively; the second part has 2 digits, 9 and 9 respectively.
Calculate Digit Verification of CAS Registry Number 490-99:
(5*4)+(4*9)+(3*0)+(2*9)+(1*9)=83
83 % 10 = 3
So 490-99-3 is a valid CAS Registry Number.

490-99-3SDS

SAFETY DATA SHEETS

According to Globally Harmonized System of Classification and Labelling of Chemicals (GHS) - Sixth revised edition

Version: 1.0

Creation Date: Aug 17, 2017

Revision Date: Aug 17, 2017

1.Identification

1.1 GHS Product identifier

Product name 2-isopropyl-5-methylcyclohexan-1-ol

1.2 Other means of identification

Product number -
Other names ISOMENTHOL

1.3 Recommended use of the chemical and restrictions on use

Identified uses For industry use only. Fragrances
Uses advised against no data available

1.4 Supplier's details

1.5 Emergency phone number

Emergency phone number -
Service hours Monday to Friday, 9am-5pm (Standard time zone: UTC/GMT +8 hours).

More Details:490-99-3 SDS

490-99-3Relevant articles and documents

Continuous synthesis of menthol from citronellal and citral over Ni-beta-zeolite-sepiolite composite catalyst

Er?nen, Kari,M?ki-Arvela, P?ivi,Martinez-Klimov, Mark,Muller, Joseph,Murzin, Dmitry Yu.,Peurla, Markus,Simakova, Irina,Vajglova, Zuzana

, (2022/04/03)

One-pot continuous synthesis of menthols both from citronellal and citral was investigated over 5 wt% Ni supported on H-Beta-38-sepiolite composite catalyst at 60–70 °C under 10–29 bar hydrogen pressure. A relatively high menthols yield of 53% and 49% and stereoselectivity to menthol of 71–76% and 72–74% were obtained from citronellal and citral respectively at the contact time 4.2 min, 70 °C and 20 bar. Citral conversion noticeably decreased with time-on-stream under 10 and 15 bar of hydrogen pressure accompanied by accumulation of citronellal, the primary hydrogenation product of citral, practically not affecting selectivity to menthol. A substantial amount of defuctionalization products observed during citral conversion, especially at the beginning of the reaction (ca. 1 h), indicated that all intermediates could contribute to formation of menthanes. Ni/H-Beta-38-sepiolite composite material prepared by extrusion was characterized by TEM, SEM, XPS, XRD, ICP-OES, N2 physisorption and FTIR techniques to perceive the interrelation between the physico-chemical and catalytic properties.

A synthetic process of L-menthol

-

Paragraph 0076; 0077; 0078, (2017/02/24)

The invention relates to the field of spice synthesis and particularly relates to a synthetic process of L-menthol. The process includes steps of d,l-menthol synthesizing, d,l-menthol rectification, d,l-menthol esterification, d,l-menthyl benzoate rectification, d,l-menthyl benzoate resolution, D-menthol synthesizing, menthol isomerization and L-menthol synthesizing. The process adopts thymol that is a simple, easily available and cheap chemical product as a raw material. Esterification conditions are optimized and the esterification and rectification are performed at the same time so as to allow the esterification to be converted into a way beneficial to d,l-menthyl benzoate production, thus increasing the esterification yield. Crystallization and resolution are optimized by utilization of the d,l-menthyl benzoate. Preparation of the L-menthol by the process is characterized by being high in yield, low in cost, simple and convenient in operation, suitable for continuous and large-scale production, and the like. According to the process, operation of the process is cyclic with a whole system being sealed, and the process is free of waste water, energy-saving and environmental friendly.

P450-catalyzed regio- and stereoselective oxidative hydroxylation of disubstituted cyclohexanes: Creation of three centers of chirality in a single CH-activation event This paper is dedicated to the memory of Harry H. Wasserman

Ilie, Adriana,Agudo, Rubén,Roiban, Gheorghe-Doru,Reetz, Manfred T.

, p. 470 - 475 (2015/02/02)

Wild-type P450-BM3 is able to catalyze in a highly regio- and diastereoselective manner the oxidative hydroxylation of non-activated disubstituted cyclohexane derivatives lacking any functional groups, including cis- and trans-1,2-dimethylcyclohexane, cis- and trans-1,4-dimethylcyclohexane, and trans-1,4-methylisopropylcyclohexane. In all cases except chiral trans-1,2-dimethylcyclohexane as substrate, the single hydroxylation event at a methylene group induces desymmetrization with simultaneous creation of three centers of chirality. Certain mutants increase selectivity, setting the stage for future directed evolution work.

Post a RFQ

Enter 15 to 2000 letters.Word count: 0 letters

Attach files(File Format: Jpeg, Jpg, Gif, Png, PDF, PPT, Zip, Rar,Word or Excel Maximum File Size: 3MB)

1

What can I do for you?
Get Best Price

Get Best Price for 490-99-3