5294-03-1Relevant articles and documents
Synthesis of α-Ketoimidoyl Fluorides via Geminal Fluorine-Promoted Azide Rearrangement
Kim, Ha Eun,Choi, Jun-Ho,Chung, Won-Jin
supporting information, p. 8810 - 8815 (2021/11/20)
Despite the promising synthetic potential, the utilization of imidoyl fluorides has been hampered by the lack of broadly applicable preparative methods. Herein, bench-stable α-ketoimidoyl fluorides were synthesized from geminal chlorofluorides through tandem azidation/rearrangement under mild conditions. The efficiency was consistently high, regardless of the steric and electronic environments. The synthetic utility of the α-ketoimidoyl fluoride was also demonstrated. Furthermore, the remarkable accelerating effect of the geminal fluorine substituent was identified and rationalized by density functional theory calculation.
Selective Synthesis of Non-Aromatic Five-Membered Sulfur Heterocycles from Alkynes by using a Proton Acid/N-Chlorophthalimide System
Yu, Wentao,Zhu, Baiyao,Shi, Fuxing,Zhou, Peiqi,Wu, Wanqing,Jiang, Huanfeng
supporting information, p. 1313 - 1322 (2020/12/01)
A multicomponent strategy to achieve two different regioselectivities from alkynes, isothiocyanates and H2O with a proton acid/N-chlorophthalimide (NCPI) system is described to selectively obtain non-aromatic five-membered sulfur heterocycles (1,3-oxathiol-2-imines/thiazol-2(3H)-one derivatives) through multiple bond formations. The process features readily available starting materials, mild reaction conditions, broad substrate scope, good functional-group tolerance, high regio- and chemo- selectivities, gram-scale synthesis and late-stage modifications. Mechanistic studies support the proposal that the transformation process includes a combination of H2O and isothiocyanate, free-radical formation, carbonation and intramolecular cyclization to give the products. Furthermore, the 1,3-oxathiol-2-imine derivatives possess unique fluorescence characteristics and can be used as Pd2+ sensors with a “turn-off” response, demonstrating potential applications in environmental and biological fields.
Rhodium-Catalyzed Regioselective Hydroformylation of Alkynes to α,β-Unsaturated Aldehydes Using Formic Acid
Fan, Chao,Hou, Jing,Chen, Yu-Jia,Ding, Kui-Ling,Zhou, Qi-Lin
supporting information, p. 2074 - 2077 (2021/04/05)
A rhodium-catalyzed hydroformylation of alkynes with formic acid was developed. The method provides α,β-unsaturated aldehydes in high yield and E-selectivity without the need to handle toxic CO gas.
Synthesis of Diarylethynes from Aryldiazonium Salts by Using Calcium Carbide as an Alkyne Source in a Deep Eutectic Solvent
Ma, Xiaolong,Li, Zheng
supporting information, p. 631 - 635 (2020/12/28)
An efficient method for the synthesis of diarylethynes from aryldiazonium salts by using calcium carbide as an alkyne source at room temperature in a deep eutectic solvent is described. The salient features of this protocol are an inexpensive and easy-to-handle alkyne source, a nonvolatile and recyclable solvent, mild conditions, and a simple workup procedure.
Iodonium Cation-Pool Electrolysis for the Three-Component Synthesis of 1,3-Oxazoles
Sattler, Lars E.,Hilt, Gerhard
, p. 605 - 608 (2020/12/07)
The synthesis of 1,3-oxazoles from symmetrical and unsymmetrical alkynes was realized by an iodonium cation-pool electrolysis of I2 in acetonitrile with a well-defined water content. Mechanistic investigations suggest that the alkyne reacts with the acetonitrile-stabilized I+ ions, followed by a Ritter-type reaction of the solvent to a nitrilium ion, which is then attacked by water. The ring closure to the 1,3-oxazoles released molecular iodine, which was visible by the naked eye. Also, some unsymmetrical internal alkynes were tested and a regioselective formation of a single isomer was determined by two-dimensional NMR experiments.
Selective Phosphoranation of Unactivated Alkynes with Phosphonium Cation to Achieve Isoquinoline Synthesis
Cui, Hong,Bai, Jinku,Ai, Tianyu,Zhan, Ye,Li, Guanzhong,Rao, Honghua
supporting information, p. 4023 - 4028 (2021/05/26)
We herein develop a selective phosphoranation of alkynes with phosphonium cation, which directs a concise approach to isoquinolines from unactivated alkyne and nitrile feedstocks in a single step. Mechanistic studies suggest that the annulation reaction is initiated by the unprecedented phosphoranation of alkynes, thus representing a unique reaction pattern of phosphonium salts and distinguishing it from existing protocols that largely rely on the utilization of highly functionalized imines/oximes and/or highly polarized alkynes.
Diborative Reduction of Alkynes to 1,2-Diboryl-1,2-Dimetalloalkanes: Its Application for the Synthesis of Diverse 1,2-Bis(boronate)s
Takahashi, Fumiya,Nogi, Keisuke,Sasamori, Takahiro,Yorimitsu, Hideki
supporting information, p. 4739 - 4744 (2019/06/27)
Reduction of alkynes with alkali metals in the presence of B2pin2 results in diboration of alkynes. Distinct from conventional dissolving metal hydrogenations, two carbon-boron bonds and also two carbon-alkali metal bonds can be constructed in one operation to form 1,2-diboryl-1,2-dimetalloalkanes. The 1,2-diboryl-1,2-dimetalloalkanes generated are readily convertible to a wide range of vicinal bis(boronate)s. In particular, oxidation of the 1,2-dianionic species provides (E)-1,2-diborylalkenes, unique anti-selective diboration of alkynes being thus executed.
Copper-Catalyzed Twofold Silylmetalation of Alkynes
Shimokawa, Jun,Yamagishi, Hiroki,Yorimitsu, Hideki
supporting information, p. 1551 - 1554 (2019/08/07)
The first twofold silylmetalation across a C≡C triple bond was achieved. In the presence of a catalytic amount of copper cyanide, diarylacetylenes were converted into 1,2-dimetalated 1,2-disilyl-1,2-diarylethanes on treatment with silylpotassium species generated in situ from disilane and t -BuOK. The dimetalated species were subsequently protonated to yield a series of 1,2-disilyl-1,2-diarylethanes.
Rhodium(iii)-catalyzed unreactive C(sp3)-H alkenylation of N-alkyl-1H-pyrazoles with alkynes
Li, Tongyu,Liu, Chang,Wu, Shaonan,Chen, Chen C.,Zhu, Bolin
supporting information, p. 7679 - 7683 (2019/08/30)
The first example of pyrazole-directed rhodium(iii)-catalyzed unreactive C(sp3)-H alkenylation with alkynes has been described, which showed a relatively broad substrate scope with good functional group compatibility. Moreover, we demonstrated that the transitive coordinating center pyrazole could be easily removed under mild conditions.
Electrochemistry-Enabled Ir-Catalyzed Vinylic C-H Functionalization
Yang, Qi-Liang,Xing, Yi-Kang,Wang, Xiang-Yang,Ma, Hong-Xing,Weng, Xin-Jun,Yang, Xiang,Guo, Hai-Ming,Mei, Tian-Sheng
supporting information, p. 18970 - 18976 (2019/12/04)
Synergistic use of electrochemistry and organometallic catalysis has emerged as a powerful tool for site-selective C-H functionalization, yet this type of transformation has thus far mainly been limited to arene C-H functionalization. Herein, we report the development of electrochemical vinylic C-H functionalization of acrylic acids with alkynes. In this reaction an iridium catalyst enables C-H/O-H functionalization for alkyne annulation, affording α-pyrones with good to excellent yields in an undivided cell. Preliminary mechanistic studies show that anodic oxidation is crucial for releasing the product and regeneration of an Ir(III) intermediate from a diene-Ir(I) complex, which is a coordinatively saturated, 18-electron complex. Importantly, common chemical oxidants such as Ag(I) or Cu(II) did not give significant amounts of the desired product in the absence of electrical current under otherwise identical conditions.