Welcome to LookChem.com Sign In|Join Free

CAS

  • or

541-33-3

Post Buying Request

541-33-3 Suppliers

Recommended suppliersmore

  • Product
  • FOB Price
  • Min.Order
  • Supply Ability
  • Supplier
  • Contact Supplier

541-33-3 Usage

Check Digit Verification of cas no

The CAS Registry Mumber 541-33-3 includes 6 digits separated into 3 groups by hyphens. The first part of the number,starting from the left, has 3 digits, 5,4 and 1 respectively; the second part has 2 digits, 3 and 3 respectively.
Calculate Digit Verification of CAS Registry Number 541-33:
(5*5)+(4*4)+(3*1)+(2*3)+(1*3)=53
53 % 10 = 3
So 541-33-3 is a valid CAS Registry Number.
InChI:InChI=1S/C4H8Cl2/c1-2-3-4(5)6/h4H,2-3H2,1H3

541-33-3SDS

SAFETY DATA SHEETS

According to Globally Harmonized System of Classification and Labelling of Chemicals (GHS) - Sixth revised edition

Version: 1.0

Creation Date: Aug 17, 2017

Revision Date: Aug 17, 2017

1.Identification

1.1 GHS Product identifier

Product name 1,1-DICHLOROBUTANE

1.2 Other means of identification

Product number -
Other names butylyl chloride

1.3 Recommended use of the chemical and restrictions on use

Identified uses For industry use only.
Uses advised against no data available

1.4 Supplier's details

1.5 Emergency phone number

Emergency phone number -
Service hours Monday to Friday, 9am-5pm (Standard time zone: UTC/GMT +8 hours).

More Details:541-33-3 SDS

541-33-3Relevant articles and documents

Flash vacuum pyrolysis over magnesium. Part 1 - Pyrolysis of benzylic, other aryl/alkyl and aliphatic halides

Aitken, R. Alan,Hodgson, Philip K.G.,Morrison, John J.,Oyewale, Adebayo O.

, p. 402 - 415 (2007/10/03)

Flash vacuum pyrolysis over a bed of freshly sublimed magnesium on glass wool results in efficient coupling of benzyl halides to give the corresponding bibenzyls. Where an ortho halogen substituent is present further dehalogenation gives some dihydroanthracene and anthracene. Efficient coupling is also observed for halomethylnaphthalenes and halodiphenylmethanes while chlorotriphenylmethane gives 4,4′-bis(diphenylmethyl)biphenyl. By using α,α′-dihalo-o-xylenes, benzocyclobutenes are obtained in good yield, while the isomeric α,α′-dihalo-p-xylenes give a range of high thermal stability polymers by polymerisation of the initially formed p-xylylenes. Other haloalkylbenzenes undergo largely dehydrohalogenation where this is possible, in some cases resulting in cyclisation. Deoxygenation is also observed with haloalkyl phenyl ketones to give phenylalkynes as well as other products. With simple alkyl halides there is efficient elimination of HCl or HBr to give alkenes. For aliphatic dihalides this also occurs to give dienes but there is also cyclisation to give cycloalkanes and dehalogenation with hydrogen atom transfer to give alkenes in some cases. For 5-bromopent-1-ene the products are those expected from a radical pathway but for 6-bromohex-1-ene they are clearly not. For 2,2-dichloropropane and 1,1-dichloropropane elimination of HCl occurs but for 1,1-dichlorobutane, -pentane and -hexane partial hydrolysis followed by elimination of HCl gives E, E-, E,Z- and Z,Z- isomers of the dialk-1-enyl ethers and fully assigned 13C NMR data are presented for these. With 6-chlorohex-1-yne and 7-chlorohept-1-yne there is cyclisation to give methylenecycloalkanes and -cycloalkynes. The behaviour of 1,2-dibromocyclohexane and 1,2-dichlorocyclooctane under these conditions is also examined. Various pieces of evidence are presented that suggest that these processes do not involve generation of free gas-phase radicals but rather surface-adsorbed organometallic species.

Versatility of Zeolites as Catalysts for Ring or Side-Chain Aromatic Chlorinations by Sulfuryl Chloride

Delaude, Lionel,Laszlo, Pierre

, p. 5260 - 5269 (2007/10/02)

Zeolites catalyze chlorination of aromatics by sulfuryl chloride SO2Cl2.It is possible by an appropriate choice of the catalyst to effect at will, with very high selectivity, either the ring or the side-chain chlorination.Zeolite ZF520 is the choice catalyst for the former, because of its high Broensted acidity.Zeolite NaX (13X) is a fine catalyst for the latter, free-radical chlorination; the reaction is best effected in the presence of a light source; the catalyst can be reused many times with no loss in activity.Both reaction modes, the ionic (ring chlorination)and the radical (side-chain substitution), are likely to occur outside of the channel network in the microporous solid.The effects of various experimental factors - such as the nature of the solvent, the reaction time and temperature, the Broensted acidity of the solid support, the presence of radical inhibitors, and the quantity of catalysts - were investigated.The procedures resulting from this study are very easy to implement in practice and are quite effective.

THE LONG-RANGE ACTION OF THE POLAR EFFECT OF SUBSTITUENTS ON THE ABSTRACTION OF HYDROGEN IN FREE-RADICAL CHLORINATION PROCESSES

Aver'yanov, V. A.,Ruban, S. G.,Klykova, M. B.,Golubev, V. E.

, p. 435 - 439 (2007/10/02)

The free-radical chlorination of 1-chloroalkanes between C3 and C6 at 263 deg K was studied under conditions with wide variation in the concentrations of the substrates in benzene.By analysis of the products from chlorination of the pure substrates it was shown that the deactivating effect of the polar substituent does not extend beyond the third carbon atom and is mainly determined by the inductive effect.In the transition to an aromatic solvent the deactivating effect on the substituent extends to the fourth carbon atom.The results are substantiated in terms of a contribution from dipole-dipole interaction between the substituent and the polar form of the transition state to the polar effect of the substituents.

Post a RFQ

Enter 15 to 2000 letters.Word count: 0 letters

Attach files(File Format: Jpeg, Jpg, Gif, Png, PDF, PPT, Zip, Rar,Word or Excel Maximum File Size: 3MB)

1

What can I do for you?
Get Best Price

Get Best Price for 541-33-3