Welcome to LookChem.com Sign In|Join Free

CAS

  • or

5448-05-5

Post Buying Request

5448-05-5 Suppliers

Recommended suppliersmore

  • Product
  • FOB Price
  • Min.Order
  • Supply Ability
  • Supplier
  • Contact Supplier

5448-05-5 Usage

Check Digit Verification of cas no

The CAS Registry Mumber 5448-05-5 includes 7 digits separated into 3 groups by hyphens. The first part of the number,starting from the left, has 4 digits, 5,4,4 and 8 respectively; the second part has 2 digits, 0 and 5 respectively.
Calculate Digit Verification of CAS Registry Number 5448-05:
(6*5)+(5*4)+(4*4)+(3*8)+(2*0)+(1*5)=95
95 % 10 = 5
So 5448-05-5 is a valid CAS Registry Number.
InChI:InChI=1/C20H23NO5/c1-6-25-19(22)16-12(3)21-13(4)17(20(23)26-7-2)18(16)14-8-10-15(24-5)11-9-14/h8-11H,6-7H2,1-5H3

5448-05-5SDS

SAFETY DATA SHEETS

According to Globally Harmonized System of Classification and Labelling of Chemicals (GHS) - Sixth revised edition

Version: 1.0

Creation Date: Aug 19, 2017

Revision Date: Aug 19, 2017

1.Identification

1.1 GHS Product identifier

Product name diethyl 4-(4-methoxyphenyl)-2,6-dimethylpyridine-3,5-dicarboxylate

1.2 Other means of identification

Product number -
Other names diethyl 2,6-dimethyl-4-(p-methoxyphenyl)pyridine-3,5-dicarboxylate

1.3 Recommended use of the chemical and restrictions on use

Identified uses For industry use only.
Uses advised against no data available

1.4 Supplier's details

1.5 Emergency phone number

Emergency phone number -
Service hours Monday to Friday, 9am-5pm (Standard time zone: UTC/GMT +8 hours).

More Details:5448-05-5 SDS

5448-05-5Relevant articles and documents

Photocatalytic Hydrogen Production from Hantzsch 1,4-Dihydropyridines by Platinum(II) Terpyridyl Complexes in Homogeneous Solution

Zhang, Dong,Wu, Li-Zhu,Zhou, Li,Han, Xue,Yang, Qing-Zheng,Zhang, Li-Ping,Tung, Chen-Ho

, p. 3440 - 3441 (2004)

1,4-Dihydropyridines have been photocatalytically oxidized to pyridines by platinum(II) terpyridyl complexes with the generation of hydrogen in homogeneous solution. The hydrogen production proceeds in quantitative yield and with great catalytic turnover. Copyright

Superparamagnetic core-shell metal–organic framework Fe3O4@Ni-MOF as efficient catalyst for oxidation of 1,4-dihydropyridines using hydrogen peroxide

Janani, Marzieh,Senejani, Masumeh Abdoli,Isfahani, Tahereh Momeni

, (2021/07/21)

A facile and efficient method was described for oxidation of some 3,5-diacyl or 3,5-diester 1,4-dihydropyridines using H2O2 in the presence of superparamagnetic core-shell metal–organic framework Fe3O4@Ni-MOF. The Fe3O4@Ni-MOF has been obtained by Step-by-Step method in which magnetic Fe3O4 magnetic nanoparticles were coated with Ni-MOF using a mercaptoacetic acid linker. The synthesized catalyst was characterized using thermogravimetric analysis, FT-IR spectroscopy, powder X-ray diffraction, field emission scanning electron microscopy and energy-dispersive X-ray analysis. The novel superparamagnetic core-shell metal–organic framework Fe3O4@Ni-MOF revealed high efficiency for oxidation of various 1,4-dihydropyridines using hydrogen peroxide. The Box–Behnken design matrix and the response surface method were applied to investigate the optimization of the reaction conditions. The conditions for optimal reaction yield and time were: amount of catalyst ≈17 mmol, temperature ≈78°C and amount of hydrogen peroxide ≈ 1 ml. A variety of 3,5-diacyl or 3,5-diester 1,4-dihydropyridines with different substituted functional groups have been converted to corresponding pyridines with good to excellent isolated yields using H2O2 and Fe3O4@Ni-MOF. The catalyst was reused up to five times for the oxidation of 1,4-dihydropyridines without a significant loss in catalytic activity. The short reaction times, simplicity of method, good to excellent yields and reusability of catalyst were some advantages of the proposed procedure.

Trinuclear cis-dioxidomolybdenum(VI) complexes of compartmental C3 symmetric ligands: Synthesis, characterization, DFT study and catalytic application for hydropyridines (Hps) via the Hantzsch reaction

Avecilla, Fernando,Gupta, Puneet,Maurya, Mannar R.,Tomar, Reshu

supporting information, (2020/06/08)

Trinuclear cis-dioxidomolybdenum(VI) complexes of the type [{MoVIO2(MeOH)}3L1-7] (1–7) have been synthesized using tris(H2ONO) donor ligands [H6L1-7 (I–VII)] assembled from benzene-1,3,5-tricarbohydrazide (bthz) and the corresponding salicylaldehyde (sal). All the ligands and the complexes were characterized by numerous techniques, such as FT-IR, UV–visible, NMR (1H and 13C) spectroscopy, electrochemical study, elemental analysis, thermogravimetric study and single crystal X-ray diffraction of the ligand III and complexes 1 and 5. In the presence of H2O2 as an oxidant, these complexes show excellent catalytic potential towards the one-pot three-components [ethyl acetoacetate, benzaldehyde (or its derivatives) and ammonium acetate] dynamic covalent assembly in the Hantzsch reaction. Under solvent free conditions, as high as 98% conversion along with 100% selectivity towards diethyl 2,6-dimethyl-4-phenyl-1,4-dihydropyridine-3,5-dicarboxylate (1,4-DHP) has been achieved in 1 h. Although solvents do not improve the conversion, they do influence the selectivity of the products. With the elapse of time, the conversion of dihydropyridine to the diethyl 2,6-dimethyl-4-phenylpyridine-3,5-dicarboxylate derivative occurs and completes in ca. 10 h with a distinct color change, showing the importance of the catalysts. Efforts have been made to provide suitable reaction pathways for the catalytic reaction based on spectroscopic and density functional theory studies.

Post a RFQ

Enter 15 to 2000 letters.Word count: 0 letters

Attach files(File Format: Jpeg, Jpg, Gif, Png, PDF, PPT, Zip, Rar,Word or Excel Maximum File Size: 3MB)

1

What can I do for you?
Get Best Price

Get Best Price for 5448-05-5