Welcome to LookChem.com Sign In|Join Free

CAS

  • or

57238-77-4

Post Buying Request

57238-77-4 Suppliers

Recommended suppliersmore

  • Product
  • FOB Price
  • Min.Order
  • Supply Ability
  • Supplier
  • Contact Supplier

57238-77-4 Usage

Check Digit Verification of cas no

The CAS Registry Mumber 57238-77-4 includes 8 digits separated into 3 groups by hyphens. The first part of the number,starting from the left, has 5 digits, 5,7,2,3 and 8 respectively; the second part has 2 digits, 7 and 7 respectively.
Calculate Digit Verification of CAS Registry Number 57238-77:
(7*5)+(6*7)+(5*2)+(4*3)+(3*8)+(2*7)+(1*7)=144
144 % 10 = 4
So 57238-77-4 is a valid CAS Registry Number.

57238-77-4Relevant articles and documents

Diazadispiroalkane derivatives are new viral entry inhibitors

Adfeldt, Rebekka,Schmitz, Janna,Kropff, Barbara,Thomas, Marco,Monakhova, Natalia,H?lper, Julia E.,Klupp, Barbara G.,Mettenleiter, Thomas C.,Makarov, Vadim,Bogner, Elke

supporting information, (2021/03/29)

Herpesviruses are widespread and can cause serious illness. Many currently available antiviral drugs have limited effects, result in rapid development of resistance, and often exhibit dose-dependent toxicity. Especially for human cytomegalovirus (HCMV), new well-tolerated compounds with novel mechanisms of action are urgently needed. In this study, we characterized the antiviral activity of two new diazadispiroalkane derivatives, 11826091 and 11826236. These two small molecules exhibited strong activity against low-passage-number HCMV. Pretreatment of cellfree virus with these compounds greatly reduced infection. Time-of-addition assays where 11826091 or 11826236 was added to cells before infection, before and during infection, or during or after infection demonstrated an inhibitory effect on early steps of infection. Interestingly, 11826236 had an effect by addition to cells after infection. Results from entry assays showed the major effect to be on attachment. Only 11826236 had a minimal effect on penetration comparable to heparin. Further, no effect on virus infection was found for cell lines with a defect in heparan sulfate expression or lacking all surface glycosaminoglycans, indicating that these small molecules bind to heparan sulfate on the cell surface. To test this further, we extended our analyses to pseudorabies virus (PrV), a member of the Alphaherpesvirinae, which is known to use cell surface heparan sulfate for initial attachment via nonessential glycoprotein C (gC). While infection with PrV wild type was strongly impaired by 11826091 or 11826236, as with heparin, a mutant lacking gC was unaffected by either treatment, demonstrating that primary attachment to heparan sulfate via gC is targeted by these small molecules.

Methyl-Selective α-Oxygenation of Tertiary Amines to Formamides by Employing Copper/Moderately Hindered Nitroxyl Radical (DMN-AZADO or 1-Me-AZADO)

Nakai, Satoru,Yatabe, Takafumi,Suzuki, Kosuke,Sasano, Yusuke,Iwabuchi, Yoshiharu,Hasegawa, Jun-ya,Mizuno, Noritaka,Yamaguchi, Kazuya

, p. 16651 - 16659 (2019/11/11)

Methyl-selective α-oxygenation of tertiary amines is a highly attractive approach for synthesizing formamides while preserving the amine substrate skeletons. Therefore, the development of efficient catalysts that can advance regioselective α-oxygenation at the N-methyl positions using molecular oxygen (O2) as the terminal oxidant is an important subject. In this study, we successfully developed a highly regioselective and efficient aerobic methyl-selective α-oxygenation of tertiary amines by employing a Cu/nitroxyl radical catalyst system. The use of moderately hindered nitroxyl radicals, such as 1,5-dimethyl-9-azanoradamantane N-oxyl (DMN-AZADO) and 1-methyl-2-azaadamanane N-oxyl (1-Me-AZADO), was very important to promote the oxygenation effectively mainly because these N-oxyls have longer life-times than less hindered N-oxyls. Various types of tertiary N-methylamines were selectively converted to the corresponding formamides. A plausible reaction mechanism is also discussed on the basis of experimental evidence, together with DFT calculations. The high regioselectivity of this catalyst system stems from steric restriction of the amine-N-oxyl interactions.

Synthesis of formamides containing unsaturated groups by: N -formylation of amines using CO2 with H2

Liu, Hangyu,Mei, Qingqing,Xu, Qingling,Song, Jinliang,Liu, Huizhen,Han, Buxing

supporting information, p. 196 - 201 (2017/08/15)

Formamides have wide applications in the industry and have been synthesized using CO2 as a carbon source and H2 as a reducing agent. However, previous systems required a noble catalyst and high temperature to achieve high efficiency, and the substrate scope was mostly limited to saturated amines. The selective N-formylation of amines containing unsaturated groups using CO2 and H2 is challenging because the efficient catalysts for the N-formylation are usually very active for hydrogenation of the unsaturated groups. Herein, we achieved for the first time a selective and efficient N-formylation of amines containing unsaturated groups using CO2 and H2 with a Cu(OAc)2-4-dimethylaminopyridine (DMAP) catalytic system. The substrates were converted to the desired formamides, while the unsaturated groups, such as the carbonyl group, the CC bond, CN bond and the ester group remained. The main reason for the excellent selectivity of the Cu(OAc)2-DMAP catalytic system was that it was very active for the N-formylation reaction, but was not active for the hydrogenation of the unsaturated groups.

Post a RFQ

Enter 15 to 2000 letters.Word count: 0 letters

Attach files(File Format: Jpeg, Jpg, Gif, Png, PDF, PPT, Zip, Rar,Word or Excel Maximum File Size: 3MB)

1

What can I do for you?
Get Best Price

Get Best Price for 57238-77-4