588-47-6Relevant articles and documents
Cobalt encapsulated in N?doped graphene sheet for one-pot reductive amination to synthesize secondary amines
Liu, Lin,Li, Wenxiu,Qi, Ran,Zhu, Qingqing,Li, Jing,Fang, Yuzhen,Kong, Xiangjin
, (2021/03/14)
To develop an efficient base-metal reductive amination catalyst for synthesis of secondary amines is still a major challenge. In this study, an efficient N-doped graphene sheet-coated cobalt catalyst (Co@CN-800) was developed through a simple pyrolysis process, which could gave 99.5 % yield of N-benzylaniline by one-pot reductive amination of nitrobenzene with benzaldehyde during at least 5 cycles. Catalyst characterization and control experiments confirmed that the robust catalytic performance of the catalyst is probably due to the synergy effect of in situ generated Co-Nx encapsulated in N?doped graphene layer and appropriate meso-pore structure. Additionally, The substrate adaptability of the catalyst was proved since a variety of corresponding secondary amines were smoothly obtained under relatively mild conditions, which makes the secondary amine synthesis strategy based on Co@CN-800 shows excellent application prospect.
Reductive amination of ketones/aldehydes with amines using BH3N(C2H5)3as a reductant
Zou, Qizhuang,Liu, Fei,Zhao, Tianxiang,Hu, Xingbang
supporting information, p. 8588 - 8591 (2021/09/04)
Herein, we report the first example of efficient reductive amination of ketones/aldehydes with amines using BH3N(C2H5)3 as a catalyst and a reductant under mild conditions, affording various tertiary and secondary amines in excellent yields. A mechanistic study indicates that BH3N(C2H5)3 plays a dual function role of promoting imine and iminium formation and serving as a reductant in reductive amination. This journal is
Ruthenium(ii) complexes with N-heterocyclic carbene-phosphine ligands for theN-alkylation of amines with alcohols
Huang, Ming,Li, Yinwu,Lan, Xiao-Bing,Liu, Jiahao,Zhao, Cunyuan,Liu, Yan,Ke, Zhuofeng
supporting information, p. 3451 - 3461 (2021/05/03)
Metal hydride complexes are key intermediates forN-alkylation of amines with alcohols by the borrowing hydrogen/hydrogen autotransfer (BH/HA) strategy. Reactivity tuning of metal hydride complexes could adjust the dehydrogenation of alcohols and the hydrogenation of imines. Herein we report ruthenium(ii) complexes with hetero-bidentate N-heterocyclic carbene (NHC)-phosphine ligands, which realize smart pathway selection in theN-alkylated reactionviareactivity tuning of [Ru-H] species by hetero-bidentate ligands. In particular, complex6cbwith a phenyl wingtip group and BArF?counter anion, is shown to be one of the most efficient pre-catalysts for this transformation (temperature is as low as 70 °C, neat conditions and catalyst loading is as low as 0.25 mol%). A large variety of (hetero)aromatic amines and primary alcohols were efficiently converted into mono-N-alkylated amines in good to excellent isolated yields. Notably, aliphatic amines, challenging methanol and diamines could also be transformed into the desired products. Detailed control experiments and density functional theory (DFT) calculations provide insights to understand the mechanism and the smart pathway selectionvia[Ru-H] species in this process.
Linear Hydroaminoalkylation Products from Alkyl-Substituted Alkenes
Warsitz, Michael,Doye, Sven
supporting information, p. 15121 - 15125 (2020/10/23)
The regioselective conversion of alkyl-substituted alkenes into linear hydroaminoalkylation products represents a strongly desirable synthetic transformation. In particular, such conversions of N-methylamine derivatives are of great scientific interest, because they would give direct access to important amines with unbranched alkyl chains. Herein, we present a new one-pot procedure that includes an initial alkene hydroaminoalkylation with an α-silylated amine substrate and a subsequent protodesilylation reaction that delivers linear hydroaminoalkylation products with high selectivity from simple alkyl-substituted alkenes. For that purpose, new titanium catalysts have been developed, which are able to activate the α-C?H bond of more challenging α-silylated amine substrates. In addition, a direct relationship between the ligand structure of the new catalysts and the obtained regioselectivity is described.
Direct N-Alkylation/Fluoroalkylation of Amines Using Carboxylic Acids via Transition-Metal-Free Catalysis
Lu, Chunlei,Qiu, Zetian,Xuan, Maojie,Huang, Yan,Lou, Yongjia,Zhu, Yiling,Shen, Hao,Lin, Bo-Lin
supporting information, p. 4151 - 4158 (2020/08/21)
A scalable protocol of direct N-mono/di-alkyl/fluoroalkylation of primary/secondary amines has been constructed with various carboxylic acids as coupling agents under the catalysis of a simple air-tolerant inorganic salt, K3PO4. Advantageous features include 100 examples, 10 drugs and drug-like amines, fluorinated complex tertiary amines, gram-scale synthesis and isotope-labelling amine, thus demonstrating the potential applicability in industry of this methodology. The involvement of relatively less reactive silicon-hydride compared with the traditional reactive metal-hydride or boron-hydride species required to reduce the amide intermediates presumably contributes to the remarkable functional group compatibility. (Figure presented.).
MOF-derived Ni?NC catalyst: Synthesis, characterization, and application in one-pot hydrogenation and reductive amination
Li, Jiayi,Wang, Bowei,Qin, Yutian,Tao, Qin,Chen, Ligong
, p. 3726 - 3734 (2019/07/22)
MOF-derived catalysts with nickel nanoparticles (NPs) uniformly embedded in nitrogen doped carbon shells were developed by pyrolysis of nickel-based metal-organic frameworks (MOFs), in which amino groups were introduced to act as the nitrogen source and possible anchoring sites for Ni NPs. The resulting materials were characterized systematically. In the architecture of the catalysts, a core-shell structure was discovered, in which Ni NPs with a diameter of 6-7 nm were surrounded by N doped graphitic layers, indicating that the introduction of amino groups into precursors is beneficial to the dispersion of NPs. One-step hydrogenation and reductive amination (OHRA) is a promising route to produce secondary amines, which avoids tedious separation of intermediates. Accordingly, we applied the prepared composites as catalysts to OHRA of benzaldehyde with nitrobenzene. Among them, the catalyst pyrolyzed at 600 °C for 1.5 h exhibited the best catalytic performance (conversion: >99%, selectivity for N-benzylaniline: 97.96%) and excellent recyclability. N-doping remarkably promotes the dispersion and stability of Ni NPs, thus improving their catalytic activity and selectivity. Furthermore, the Ni-N species as well as synergism of Ni NPs and adjacent pyridinic N may also facilitate the activation of H2. And its excellent stability and recyclability can be attributed to the core-shell structure. The achieved success in MOF-derived nanocomposites may pave the way for further industrial applications.
Colloidal and Nanosized Catalysts in Organic Synthesis: XXIII. Reductive Amination of Carbonyl Compounds Catalyzed by Nickel Nanoparticles in a Plug-Flow Reactor
Mokhov, V. M.,Nebykov, D. N.,Paputina, A. N.,Popov, Yu. V.,Shishkin, E. V.
, p. 2333 - 2340 (2020/02/25)
Reductive amination of aldehydes and ketones with primary and secondary amines under catalysis with nickel nanoparticles supported on zeolite X, MgO, or activated carbon in the gas phase or in the gas-liquid system in a plug-flow reactor proceeds at atmospheric pressure of hydrogen with the formation of secondary or tertiary amines in high yield.
Catalytic Selective Oxidative Coupling of Secondary N-Alkylanilines: An Approach to Azoxyarene
Ke, Lei,Zhu, Guirong,Qian, Hui,Xiang, Guangya,Chen, Qin,Chen, Zhilong
supporting information, p. 4008 - 4013 (2019/06/04)
Azoxyarenes are among important scaffolds in organic molecules. Direct oxidative coupling of primary anilines provides a concise fashion to construct them. However, whether these scaffolds can be prepared from secondary N-alkylanilines is not well explored. Here, we present a catalytic selective oxidative coupling of secondary N-alkylaniline to afford azoxyarene with tungsten catalyst under mild conditions. In addition, azoxy can be viewed as a bioisostere of alkene and amide. Several "azoxyarene analogues" of the corresponding bioactive alkenes and amides showed comparable promising anticancer activities.
Cu-mediated selective bromination of aniline derivatives and preliminary mechanism study
Zhao, Hong-Yi,Yang, Xue-Yan,Lei, Hao,Xin, Minhang,Zhang, San-Qi
supporting information, p. 1406 - 1415 (2019/05/01)
A simple and efficient bromination of aniline, aniline derivatives, and analogs have been developed. Forty three examples were given and the highest yield reached was 98%. Different substrates including substituted aniline, pyridin-amine, N-substituted aniline, N,N-disubstituted aniline, N-phenyl-amide, N-phenyl-sulfonamide, and nitrogen-containing heterocycles were all reactive and selectively generated desired bromo-products. The method can be applied to synthesize drug intermediate and quinoxaline derivatives.
B(C6F5)3-Catalyzed Deoxygenative Reduction of Amides to Amines with Ammonia Borane
Pan, Yixiao,Luo, Zhenli,Han, Jiahong,Xu, Xin,Chen, Changjun,Zhao, Haoqiang,Xu, Lijin,Fan, Qinghua,Xiao, Jianliang
supporting information, p. 2301 - 2308 (2019/01/30)
The first B(C6F5)3-catalyzed deoxygenative reduction of amides into the corresponding amines with readily accessible and stable ammonia borane (AB) as a reducing agent under mild reaction conditions is reported. This metal-free protocol provides facile access to a wide range of structurally diverse amine products in good to excellent yields, and various functional groups including those that are reduction-sensitive were well tolerated. This new method is also applicable to chiral amide substrates without erosion of the enantiomeric purity. The role of BF3 ? OEt2 co-catalyst in this reaction is to activate the amide carbonyl group via the in situ formation of an amide-boron adduct. (Figure presented.).