Welcome to LookChem.com Sign In|Join Free

CAS

  • or

59080-45-4

Post Buying Request

59080-45-4 Suppliers

Recommended suppliersmore

  • Product
  • FOB Price
  • Min.Order
  • Supply Ability
  • Supplier
  • Contact Supplier

59080-45-4 Usage

Chemical Properties

White Crystalline Solid

Uses

Different sources of media describe the Uses of 59080-45-4 differently. You can refer to the following data:
1. A mild nonionic detergent
2. A mild nonionic detergent.

Check Digit Verification of cas no

The CAS Registry Mumber 59080-45-4 includes 8 digits separated into 3 groups by hyphens. The first part of the number,starting from the left, has 5 digits, 5,9,0,8 and 0 respectively; the second part has 2 digits, 4 and 5 respectively.
Calculate Digit Verification of CAS Registry Number 59080-45:
(7*5)+(6*9)+(5*0)+(4*8)+(3*0)+(2*4)+(1*5)=134
134 % 10 = 4
So 59080-45-4 is a valid CAS Registry Number.
InChI:InChI=1/C12H24O6/c1-2-3-4-5-6-17-12-11(16)10(15)9(14)8(7-13)18-12/h8-16H,2-7H2,1H3/t8-,9-,10+,11-,12-/m1/s1

59080-45-4SDS

SAFETY DATA SHEETS

According to Globally Harmonized System of Classification and Labelling of Chemicals (GHS) - Sixth revised edition

Version: 1.0

Creation Date: Aug 13, 2017

Revision Date: Aug 13, 2017

1.Identification

1.1 GHS Product identifier

Product name Hexyl β-D-Glucopyranoside

1.2 Other means of identification

Product number -
Other names (2R,3R,4S,5S,6R)-2-hexoxy-6-(hydroxymethyl)oxane-3,4,5-triol

1.3 Recommended use of the chemical and restrictions on use

Identified uses For industry use only.
Uses advised against no data available

1.4 Supplier's details

1.5 Emergency phone number

Emergency phone number -
Service hours Monday to Friday, 9am-5pm (Standard time zone: UTC/GMT +8 hours).

More Details:59080-45-4 SDS

59080-45-4Relevant articles and documents

Chemoenzymatic synthesis of β-D-glucosides using cellobiose phosphorylase from Clostridium thermocellum

De Winter, Karel,Van Renterghem, Lisa,Wuyts, Kathleen,Pelantová, Helena,K?en, Vladimír,Soetaert, Wim,Desmet, Tom

, p. 1961 - 1969 (2015/06/02)

Abstract Over the past decade, disaccharide phosphorylases have been successfully applied for the synthesis of numerous α-glucosides. In contrast, much less research has been done with respect to the production of β-glucosides. Although cellobiose phosphorylase was already successfully used for the synthesis of various disaccharides and branched trisaccharides, its glycosylation potential towards small organic compounds has not been explored to date. Unfortunately, disaccharide phosphorylases typically have a very low affinity for non-carbohydrate acceptors, which urges the addition of solvents. The ionic liquid AMMOENGTM 101 and ethyl acetate were identified as the most promising solvents, allowing the synthesis of various β-glucosides. Next to hexyl, heptyl, octyl, nonyl, decyl and undecyl β-D-glucopyranosides, also the formation of vanillyl 4-O-β-D-glucopyranoside, 2-phenylethyl β-D-glucopyranoside, β-citronellyl β-D-glucopyranoside and 1-O-β-D-glucopyranosyl hydroquinone was confirmed by nuclear magnetic resonance spectroscopy and mass spectrometry. Moreover, the stability of cellobiose phosphorylase could be drastically improved by creating cross-linked enzyme aggregates, while the efficiency of the biocatalyst for the synthesis of octyl β-D-glucopyranoside was doubled by imprinting with octanol. The usefulness of the latter system was illustrated by performing three consecutive batch conversions with octanol imprinted cross-linked enzyme aggregates, yielding roughly 2 g of octyl β-D-glucopyranoside.

Preparation of two glycoside hydrolases for use in micro-aqueous media

Lundemo, Pontus,Karlsson, Eva Nordberg,Adlercreutz, Patrick

, p. 1 - 6 (2014/07/22)

Enzymatic synthesis of alkyl glycosides using glycoside hydrolases is well studied, but has yet to reach industrial scale, primarily due to limited yields. Reduced water content should increase yields by limiting the unwanted hydrolytic side reaction. However, previous studies have shown that a reduction in water content surprisingly favors hydrolysis over transglycosylation. In addition, glycoside hydrolases normally require a high degree of hydration to function efficiently. This study compares six enzyme preparation methods to improve resilience and activity of two glycoside hydrolases from Thermotoga neapolitana (TnBgl3B and TnBgl1A) in micro-aqueous hexanol. Indeed, when adsorbed onto Accurel MP-1000 both enzymes increasingly favored transglycosylation over hydrolysis at low hydration, in contrast to freeze-dried or untreated enzyme. Additionally, they displayed 17-70× higher reaction rates compared to freeze-dried enzyme at low water activity, while displaying comparable or lower activity for fully hydrated systems. These results provide valuable information for use of enzymes under micro-aqueous conditions and build toward utilizing the full synthetic potential of glycoside hydrolases.

Significantly improved equilibrium yield of long-chain alkyl glucosides via reverse hydrolysis in a water-poor system using cross-linked almond meal as a cheap and robust biocatalyst

Wang, Qinqqin,Yu, Huilei,Zhao, Na,Li, Chunxiu,Shang, Yazhuo,Liu, Honglai,Xu, Jianhe

, p. 275 - 280 (2012/06/29)

An array of ten β-D-glucopyranosides with varied alkyl chain lengths were enzymatically synthesized. It was found that for longer alkyl chains a lower initial rate and final yield of glucoside was obtained except for methyl glucoside because of the severe toxicity of methanol to the enzyme. From a thermodynamics point of view, the equilibrium constant and Gibbs free energy variation of the glucoside syntheses were systematically investigated. To improve the final yields of the glucosides containing long alkyl chains the equilibrium of the enzymatic glucoside synthesis was altered. The equilibrium yield of decyl β-D-glucoside increased from 1.9 to 6.1 when the water content was reduced from 10 to 5 (v/v) using tert-butanol as a cosolvent and 0.10 mol/L of glucose as a substrate. As for the other longer alkyl chain glucosides, heptyl β-D-glucoside was found to have significant surface activity as well.

Post a RFQ

Enter 15 to 2000 letters.Word count: 0 letters

Attach files(File Format: Jpeg, Jpg, Gif, Png, PDF, PPT, Zip, Rar,Word or Excel Maximum File Size: 3MB)

1

What can I do for you?
Get Best Price

Get Best Price for 59080-45-4