Welcome to LookChem.com Sign In|Join Free

CAS

  • or

59121-74-3

Post Buying Request

59121-74-3 Suppliers

Recommended suppliersmore

  • Product
  • FOB Price
  • Min.Order
  • Supply Ability
  • Supplier
  • Contact Supplier

59121-74-3 Usage

Check Digit Verification of cas no

The CAS Registry Mumber 59121-74-3 includes 8 digits separated into 3 groups by hyphens. The first part of the number,starting from the left, has 5 digits, 5,9,1,2 and 1 respectively; the second part has 2 digits, 7 and 4 respectively.
Calculate Digit Verification of CAS Registry Number 59121-74:
(7*5)+(6*9)+(5*1)+(4*2)+(3*1)+(2*7)+(1*4)=123
123 % 10 = 3
So 59121-74-3 is a valid CAS Registry Number.

59121-74-3SDS

SAFETY DATA SHEETS

According to Globally Harmonized System of Classification and Labelling of Chemicals (GHS) - Sixth revised edition

Version: 1.0

Creation Date: Aug 13, 2017

Revision Date: Aug 13, 2017

1.Identification

1.1 GHS Product identifier

Product name (1S,2R,4R)-p-menth-8-ene-1,2-diol

1.2 Other means of identification

Product number -
Other names (1S)-1r-Methyl-4t-isopropenyl-cyclohexandiol-(1.2t)

1.3 Recommended use of the chemical and restrictions on use

Identified uses For industry use only.
Uses advised against no data available

1.4 Supplier's details

1.5 Emergency phone number

Emergency phone number -
Service hours Monday to Friday, 9am-5pm (Standard time zone: UTC/GMT +8 hours).

More Details:59121-74-3 SDS

59121-74-3Relevant articles and documents

A silicododecamolybdate/pyridinium-tetrazole hybrid molecular salt as a catalyst for the epoxidation of bio-derived olefins

Nunes, Martinique S.,Neves, Patrícia,Gomes, Ana C.,Cunha-Silva, Luís,Lopes, André D.,Valente, Anabela A.,Pillinger, Martyn,Gon?alves, Isabel S.

, (2020/11/27)

The hybrid polyoxometalate (POM) salt (Hptz)4[SiMo12O40]?nH2O (1) (ptz = 5-(2-pyridyl)tetrazole) has been prepared, characterized by X-ray crystallography, and examined as a catalyst for the epoxidation of cis-cyclooctene (Cy) and bio-derived olefins, namely dl-limonene (Lim; a naturally occurring monoterpene found in the rinds of citrus fruits), methyl oleate and methyl linoleate (fatty acid methyl esters (FAMEs) obtained by transesterification of vegetable oils). The crystal structure of 1 consists of α-Keggin-type heteropolyanions, [SiMo12O40]4-, surrounded by space-filling and charge-balancing 2-(tetrazol-5-yl)pyridinium (Hptz+) cations, as well as by a large number of water molecules of crystallization (n = 9). The water molecules mediate an extensive three-dimensional (3D) hydrogen-bonding network involving the inorganic anions and organic cations. For the epoxidation of the model substrate Cy in a nonaqueous system (tert-butylhydroperoxide as oxidant), the catalytic performance of 1 (100% epoxide yield at 24 h, 70 °C) was superior to that of the tetrabutylammonium salt (Bu4N)4[SiMo12O40] (2) (63% epoxide yield at 24 h), illustrating the role of the counterion Hptz+ in enhancing catalytic activity. The hybrid salt 1 was effective for the epoxidation of Lim (69%/85% conversion at 6 h/24 h) and the FAMEs (87–88%/100% conversion at 6 h/24 h), leading to useful bio-based products (epoxides, diepoxides and diol products).

Selective Catalytic Synthesis of 1,2- and 8,9-Cyclic Limonene Carbonates as Versatile Building Blocks for Novel Hydroxyurethanes

Maltby, Katarzyna A.,Hutchby, Marc,Plucinski, Pawel,Davidson, Matthew G.,Hintermair, Ulrich

supporting information, p. 7405 - 7415 (2020/05/25)

The selective catalytic synthesis of limonene-derived monofunctional cyclic carbonates and their subsequent functionalisation via thiol–ene addition and amine ring-opening is reported. A phosphotungstate polyoxometalate catalyst used for limonene epoxidation in the 1,2-position is shown to also be active in cyclic carbonate synthesis, allowing a two-step, one-pot synthesis without intermittent epoxide isolation. When used in conjunction with a classical halide catalyst, the polyoxometalate increased the rate of carbonation in a synergistic double-activation of both substrates. The cis isomer is shown to be responsible for incomplete conversion and by-product formation in commercial mixtures of 1,2-limomene oxide. Carbonation of 8,9-limonene epoxide furnished the 8,9-limonene carbonate for the first time. Both cyclic carbonates underwent thiol–ene addition reactions to yield linked di-monocarbonates, which can be used in linear non-isocyanate polyurethanes synthesis, as shown by their facile ring-opening with N-hexylamine. Thus, the selective catalytic route to monofunctional limonene carbonates gives straightforward access to monomers for novel bio-based polymers.

Systematic synthetic study of four diastereomerically distinct limonene-1,2-diols and their corresponding cyclic carbonates

Morikawa, Hiroshi,Yamaguchi, Jun-ichi,Sugimura, Shun-ichi,Minamoto, Masato,Gorou, Yuuta,Morinaga, Hisatoyo,Motokucho, Suguru

supporting information, p. 130 - 136 (2019/01/30)

In order to produce versatile and potentially functional terpene-based compounds, a (R)-limonene-derived diol and its corresponding five-membered cyclic carbonate were prepared. The diol (cyclic carbonate) comprises four diastereomers based on the stereochemical configuration of the diol (and cyclic carbonate) moiety. By choosing the appropriate starting compounds (trans- and cis-limonene oxide) and conditions, the desired diastereomers were synthesised in moderate to high yields with, in most cases, high stereoselectivity. Comparison of the NMR data of the obtained diols and carbonates revealed that the four different diastereomers of each compound could be distinguished by reference to their characteristic signals.

Post a RFQ

Enter 15 to 2000 letters.Word count: 0 letters

Attach files(File Format: Jpeg, Jpg, Gif, Png, PDF, PPT, Zip, Rar,Word or Excel Maximum File Size: 3MB)

1

What can I do for you?
Get Best Price

Get Best Price for 59121-74-3