Welcome to LookChem.com Sign In|Join Free

CAS

  • or

619-76-1

Post Buying Request

619-76-1 Suppliers

Recommended suppliersmore

  • Product
  • FOB Price
  • Min.Order
  • Supply Ability
  • Supplier
  • Contact Supplier

619-76-1 Usage

Check Digit Verification of cas no

The CAS Registry Mumber 619-76-1 includes 6 digits separated into 3 groups by hyphens. The first part of the number,starting from the left, has 3 digits, 6,1 and 9 respectively; the second part has 2 digits, 7 and 6 respectively.
Calculate Digit Verification of CAS Registry Number 619-76:
(5*6)+(4*1)+(3*9)+(2*7)+(1*6)=81
81 % 10 = 1
So 619-76-1 is a valid CAS Registry Number.
InChI:InChI=1/C10H13NO/c1-7(2)8-3-5-9(6-4-8)10(11)12/h3-7H,1-2H3,(H2,11,12)

619-76-1SDS

SAFETY DATA SHEETS

According to Globally Harmonized System of Classification and Labelling of Chemicals (GHS) - Sixth revised edition

Version: 1.0

Creation Date: Aug 15, 2017

Revision Date: Aug 15, 2017

1.Identification

1.1 GHS Product identifier

Product name 4-propan-2-ylbenzamide

1.2 Other means of identification

Product number -
Other names 4-Isopropyl-benzoesaeure-amid

1.3 Recommended use of the chemical and restrictions on use

Identified uses For industry use only.
Uses advised against no data available

1.4 Supplier's details

1.5 Emergency phone number

Emergency phone number -
Service hours Monday to Friday, 9am-5pm (Standard time zone: UTC/GMT +8 hours).

More Details:619-76-1 SDS

619-76-1Relevant articles and documents

A Molecular Iron-Based System for Divergent Bond Activation: Controlling the Reactivity of Aldehydes

Chatterjee, Basujit,Jena, Soumyashree,Chugh, Vishal,Weyhermüller, Thomas,Werlé, Christophe

, p. 7176 - 7185 (2021/06/30)

The direct synthesis of amides and nitriles from readily available aldehyde precursors provides access to functional groups of major synthetic utility. To date, most reliable catalytic methods have typically been optimized to supply one product exclusively. Herein, we describe an approach centered on an operationally simple iron-based system that, depending on the reaction conditions, selectively addresses either the C=O or C-H bond of aldehydes. This way, two divergent reaction pathways can be opened to furnish both products in high yields and selectivities under mild reaction conditions. The catalyst system takes advantage of iron's dual reactivity capable of acting as (1) a Lewis acid and (2) a nitrene transfer platform to govern the aldehyde building block. The present transformation offers a rare control over the selectivity on the basis of the iron system's ionic nature. This approach expands the repertoire of protocols for amide and nitrile synthesis and shows that fine adjustments of the catalyst system's molecular environment can supply control over bond activation processes, thus providing easy access to various products from primary building blocks.

Novel design of recyclable copper(II) complex supported on magnetic nanoparticles as active catalyst for Beckmann rearrangement in poly(ethylene glycol)

Keyhaniyan, Mahdi,Shiri, Ali,Eshghi, Hossein,Khojastehnezhad, Amir

, (2018/05/23)

Copper complex-functionalized magnetic core–shell nanoparticles (Fe3O4@SiO2-Lig-Cu) were prepared and characterized using various techniques. The activity of the new catalyst was tested for the Beckmann rearrangement. The reaction conditions allow for the conversion of a wide variety of aldoximes, including aromatic and heterocyclic ones, to amides in good to excellent yields. High efficiency, mild reaction conditions, easy work-up, use of poly(ethylene glycol) as a green medium and simple purification of products are important advantages of this system. Moreover, the eco-friendly heterogeneous nanocatalyst could be easily recovered from the reaction mixture using an external magnet and reused several times.

A method of from [...] amide

-

Paragraph 0029-0032, (2017/01/31)

The invention discloses a method for synthesizing amides from oxime. The method is characterized by adding oxime, water and a water-soluble iridium complex catalyst to a reaction vessel, cooling a reactant to the room temperature after the reaction mixture reacts at 80-120 DEG C for several hours, removing water through selective evaporation, and obtaining a target product through column separation. Compared with existing methods for synthesizing amides through oxime rearrangement in water through transition metal catalysis, the method has the advantages that the used catalyst is low in load and does not contain phosphine ligands severely polluting the environment, so that the reaction can be carried out in the air, without nitrogen protection; therefore the reaction meets the green chemical requirements and has an extensive development prospect.

Post a RFQ

Enter 15 to 2000 letters.Word count: 0 letters

Attach files(File Format: Jpeg, Jpg, Gif, Png, PDF, PPT, Zip, Rar,Word or Excel Maximum File Size: 3MB)

1

What can I do for you?
Get Best Price

Get Best Price for 619-76-1