Welcome to LookChem.com Sign In|Join Free

CAS

  • or

624-95-3

Post Buying Request

624-95-3 Suppliers

Recommended suppliersmore

  • Product
  • FOB Price
  • Min.Order
  • Supply Ability
  • Supplier
  • Contact Supplier

624-95-3 Usage

Uses

3,3-Dimethyl-1-butanol, is an organic building block used for the synthesis of various pharmaceutical compounds. It is an important intermediate in the synthesis of Neotame, an enhanced sweetening agent.

General Description

3,3-Dimethyl-1-butanol is a glass forming material. The molecular dynamics of 3,3-dimethyl-1-butanol was studied.

Check Digit Verification of cas no

The CAS Registry Mumber 624-95-3 includes 6 digits separated into 3 groups by hyphens. The first part of the number,starting from the left, has 3 digits, 6,2 and 4 respectively; the second part has 2 digits, 9 and 5 respectively.
Calculate Digit Verification of CAS Registry Number 624-95:
(5*6)+(4*2)+(3*4)+(2*9)+(1*5)=73
73 % 10 = 3
So 624-95-3 is a valid CAS Registry Number.
InChI:InChI=1/C6H14O/c1-6(2,3)4-5-7/h7H,4-5H2,1-3H3

624-95-3 Well-known Company Product Price

  • Brand
  • (Code)Product description
  • CAS number
  • Packaging
  • Price
  • Detail
  • Alfa Aesar

  • (H30194)  3,3-Dimethyl-1-butanol, 97%   

  • 624-95-3

  • 10g

  • 1163.0CNY

  • Detail
  • Alfa Aesar

  • (H30194)  3,3-Dimethyl-1-butanol, 97%   

  • 624-95-3

  • 50g

  • 4009.0CNY

  • Detail

624-95-3SDS

SAFETY DATA SHEETS

According to Globally Harmonized System of Classification and Labelling of Chemicals (GHS) - Sixth revised edition

Version: 1.0

Creation Date: Aug 12, 2017

Revision Date: Aug 12, 2017

1.Identification

1.1 GHS Product identifier

Product name 3,3-Dimethyl-1-Butanol

1.2 Other means of identification

Product number -
Other names 1-Butanol, 3,3-dimethyl-

1.3 Recommended use of the chemical and restrictions on use

Identified uses For industry use only.
Uses advised against no data available

1.4 Supplier's details

1.5 Emergency phone number

Emergency phone number -
Service hours Monday to Friday, 9am-5pm (Standard time zone: UTC/GMT +8 hours).

More Details:624-95-3 SDS

624-95-3Relevant articles and documents

Pd-Catalyzed intermolecular C-H bond arylation reactions: Effect of bulkiness of carboxylate ligands

Tanji, Yutaka,Hamaguchi, Ryo,Tsuji, Yasushi,Fujihara, Tetsuaki

supporting information, p. 3843 - 3846 (2020/04/15)

A bulky carboxylic acid bearing one 1-adamantylmethyl and two methyl substituents at the α-position is demonstrated to work as an efficient carboxylate ligand source in Pd-catalyzed intermolecular C(sp2)-H bond arylation reactions. The reactions proceeded smoothly under mild conditions, taking advantage of the steric bulk of the carboxylate ligands.

Reactions of carbene-stabilized borenium cations

Cao, Levy L.,Farrell, Jeffrey M.,Lam, Jolie,Stephan, Douglas. W.

, p. 1839 - 1846 (2020/02/20)

In this paper we probe the reactivity of the borenium cations [C3H2(NCH2C6H4)(NCH2Ph)BH][B(C6F5)4] 2 and [C3H2(NCH2C6H4)2B][B(C6F5)4] 3. The reactions of 2 with cyclohexene or 3,3-dimethyl-1-butene gave the alkyl-aryl borenium salts [PhCH2(CHN)2CCH2C6H4BR][B(C6F5)4] (R = Cy 4, CH2CH2tBu 5) while the corresponding reactions with diphenylacetylene, 1-hexyne and 1-phenyl-1-propyne gave the aryl-alkenyl borenium cation salts [PhCH2(CHN)2CCH2C6H4BC(R1)C(H)R2][B(C6F5)4] (R1 = R2 = Ph 6, R1 = H, R2 = C4H97, R1 = Me, R2 = Ph 8a, R1 = Ph, R2 = Me 8b). In contrast, the reaction of 2 with ethynyldiphenylphosphane or 2-vinylpyridine lead to the formation of the adducts, [PhCH2(CHN)2CCH2C6H4B(H)P(Ph2)CCH][B(C6F5)4] 9, [PhCH2(CHN)2CCH2C6H4B(H)NC5H4C(H)CH2][B(C6F5)4] 10, respectively, while the more bulky donor H2CC(Ph)PMes2 gave 1,2-hydroboration of the phosphinoalkene affording [PhCH2(CHN)2CCH2C6H4BCH2CH(Ph)PMes2][B(C6F5)4] 11. In another vein of reactivity, one or two equivalents of the FLP, PtBu3/B(C6F5)3 is shown to react with 3 to give the zwitterionic borenium-borate species [C2H2(NCH(BC(CHNCH2C6H4)2)C6H4)(NCH(B(C6F5)3)C6H4)CB] 12 and the anionic bis-borate species[tBu3PH][C2H2(NCH(B(C6F5)3)2C6H4)2CB] 13. The implications of these findings are discussed.

Failure and Redemption of Statistical and Nonstatistical Rate Theories in the Hydroboration of Alkenes

Bailey, Johnathan O.,Singleton, Daniel A.

supporting information, p. 15710 - 15723 (2017/11/14)

Our previous work found that canonical forms of transition state theory incorrectly predict the regioselectivity of the hydroboration of propene with BH3 in solution. In response, it has been suggested that alternative statistical and nonstatistical rate theories can adequately account for the selectivity. This paper uses a combination of experimental and theoretical studies to critically evaluate the ability of these rate theories, as well as dynamic trajectories and newly developed localized statistical models, to predict quantitative selectivities and qualitative trends in hydroborations on a broader scale. The hydroboration of a series of terminally substituted alkenes with BH3 was examined experimentally, and a classically unexpected trend is that the selectivity increases as the alkyl chain is lengthened far from the reactive centers. Conventional and variational transition state theories can predict neither the selectivities nor the trends. The canonical competitive nonstatistical model makes somewhat better predictions for some alkenes but fails to predict trends, and it performs poorly with an alkene chosen to test a specific prediction of the model. Added nonstatistical corrections to this model make the predictions worse. Parametrized Rice-Ramsperger-Kassel-Marcus (RRKM)-master equation calculations correctly predict the direction of the trend in selectivity versus alkene size but overpredict its magnitude, and the selectivity with large alkenes remains unpredictable with any parametrization. Trajectory studies in explicit solvent can predict selectivities without parametrization but are impractical for predicting small changes in selectivity. From a lifetime and energy analysis of the trajectories, "localized RRKM-ME" and "competitive localized noncanonical" rate models are suggested as steps toward a general model. These provide the best predictions of the experimental observations and insight into the selectivities.

Post a RFQ

Enter 15 to 2000 letters.Word count: 0 letters

Attach files(File Format: Jpeg, Jpg, Gif, Png, PDF, PPT, Zip, Rar,Word or Excel Maximum File Size: 3MB)

1

What can I do for you?
Get Best Price

Get Best Price for 624-95-3