6310-19-6Relevant articles and documents
BENZIIMIDAZOLE AND IMIDAZOPYRIDINE DERIVATIVES AS SODIUM CHANNEL MODULATORS
-
, (2013/08/15)
The invention relates to benzimidazole and imidazopyridine derivatives, to their use in medicine, to compositions containing them, to processes for their preparation and to intermediates used in such processes. More particularly the invention relates to new Nav1.8 modulators of formula (I) or pharmaceutically acceptable salts thereof, wherein R1, R2, R3, R4, R5, R6, R7. X and Y are as defined in the description. Nav1.8 modulators are potentially useful in the treatment of a wide range of disorders, particularly pain.
Molecular spur gears comprising triptycene rotators and bibenzimidazole-based stators
Frantz, Derik K.,Linden, Anthony,Baldridge, Kim K.,Siegel, Jay S.
supporting information; experimental part, p. 1528 - 1535 (2012/03/10)
Dynamic gearing of molecular spur gears, the most common type of mechanical gear, is elucidated. Molecular design and conformational analysis show that derivatives of 4,4-bis(triptycen-9-ylethynyl)bibenzimidazole represent suitable constructs to investigate gearing behavior of collateral triptycene (Tp) groups. To test this design, DFT calculations (B97-D/Def2-TZVP) were employed and the results suggest that these molecules undergo geared rotation preferentially to gear slippage. Synthesis of derivatives was carried out, providing a series of molecular spur gears, including the first desymmetrized spur gear molecules, which were subsequently subjected to stereochemical analysis.
SUBSITITUTED BENZIMIDAZOLES
-
Page/Page column 51, (2011/05/05)
This invention relates to novel substituted benzimidazoles and pharmaceutically acceptable salts thereof. This invention also provides compositions comprising a compound of this invention and the use of such compositions in methods of treating diseases and conditions that are beneficially treated by administering a compound that modulates theGABAA receptor. This invention also provides novel intermediates for the preparation of the compounds of the invention, and salts thereof.
Structure-activity relationship of omeprazole and analogues as Helicobacter pylori urease inhibitors
Kuhler,Fryklund,Bergman,Weilitz,Lee,Larsson
, p. 4906 - 4916 (2007/10/03)
Helicobacter pylori urease belongs to a family of highly conserved urea- hydrolyzing enzymes. A common feature of these enzymes is the presence of two Lewis acid nickel ions and a reactive cysteine residue in the active site. The H+/K+-ATPase inhibitor omeprazole is a prodrug of a sulfenamide which covalently modifies cysteine residues on the luminal side of the H+/K+- ATPase of gastric parietal cells. Omeprazole and eight analogues were selected based on their chemical, electronic, and kinetic properties, and each was incubated with viable H. pylori in phosphate-buffered saline at pH 7.4 for 30 min, after which 100 mM urea was added and the amount of ammonia formed analyzed after a further 10 min. Inhibition between 0% and 100% at a 0.1 mM concentration was observed for the different analogues and could be expressed as a function of the pK(a)-value of the pyridine, the pK(a)-value of the benzimidazole, the overall lipophilicity, and, most importantly, the rate of sulfenamide formation, in a quantitative structure-activity relationship. The inhibition was potentiated by a lower pH (favoring the formation of the sulfenamide) but abolished in the presence of β- mercaptoethanol (a scavenger of the sulfenamide). Structural analogues incapable of yielding the sulfenamide did not inhibit ammonia production. Treatment of Helicobacter felis-infected mice with 230 μmol/kg flurofamide b.i.d. for 4 weeks, known to potently inhibit urease activity in vivo, as a means of eradicating the infection, was tested and compared with the effect of 125 μmol/kg omeprazole b.i.d. for 4 weeks. Neither treatment proved efficacious.