Welcome to LookChem.com Sign In|Join Free

CAS

  • or
(Z)-2,2'-Dichloroazobenzene is a chemical with a specific purpose. Lookchem provides you with multiple data and supplier information of this chemical.

63213-02-5 Suppliers

Post Buying Request

Recommended suppliersmore

  • Product
  • FOB Price
  • Min.Order
  • Supply Ability
  • Supplier
  • Contact Supplier
  • 63213-02-5 Structure
  • Basic information

    1. Product Name: (Z)-2,2'-Dichloroazobenzene
    2. Synonyms: (Z)-2,2'-Dichloroazobenzene
    3. CAS NO:63213-02-5
    4. Molecular Formula: C12H8Cl2N2
    5. Molecular Weight: 251.11
    6. EINECS: N/A
    7. Product Categories: N/A
    8. Mol File: 63213-02-5.mol
  • Chemical Properties

    1. Melting Point: N/A
    2. Boiling Point: N/A
    3. Flash Point: N/A
    4. Appearance: /
    5. Density: N/A
    6. Refractive Index: N/A
    7. Storage Temp.: N/A
    8. Solubility: N/A
    9. CAS DataBase Reference: (Z)-2,2'-Dichloroazobenzene(CAS DataBase Reference)
    10. NIST Chemistry Reference: (Z)-2,2'-Dichloroazobenzene(63213-02-5)
    11. EPA Substance Registry System: (Z)-2,2'-Dichloroazobenzene(63213-02-5)
  • Safety Data

    1. Hazard Codes: N/A
    2. Statements: N/A
    3. Safety Statements: N/A
    4. WGK Germany:
    5. RTECS:
    6. HazardClass: N/A
    7. PackingGroup: N/A
    8. Hazardous Substances Data: 63213-02-5(Hazardous Substances Data)

63213-02-5 Usage

Check Digit Verification of cas no

The CAS Registry Mumber 63213-02-5 includes 8 digits separated into 3 groups by hyphens. The first part of the number,starting from the left, has 5 digits, 6,3,2,1 and 3 respectively; the second part has 2 digits, 0 and 2 respectively.
Calculate Digit Verification of CAS Registry Number 63213-02:
(7*6)+(6*3)+(5*2)+(4*1)+(3*3)+(2*0)+(1*2)=85
85 % 10 = 5
So 63213-02-5 is a valid CAS Registry Number.

63213-02-5SDS

SAFETY DATA SHEETS

According to Globally Harmonized System of Classification and Labelling of Chemicals (GHS) - Sixth revised edition

Version: 1.0

Creation Date: Aug 14, 2017

Revision Date: Aug 14, 2017

1.Identification

1.1 GHS Product identifier

Product name 1,2-bis(2-chlorophenyl)diazene

1.2 Other means of identification

Product number -
Other names o,o'-Dichloroazobenzene

1.3 Recommended use of the chemical and restrictions on use

Identified uses For industry use only.
Uses advised against no data available

1.4 Supplier's details

1.5 Emergency phone number

Emergency phone number -
Service hours Monday to Friday, 9am-5pm (Standard time zone: UTC/GMT +8 hours).

More Details:63213-02-5 SDS

63213-02-5Relevant articles and documents

Azo synthesis meets molecular iodine catalysis

Rowshanpour, Rozhin,Dudding, Travis

, p. 7251 - 7256 (2021/02/26)

A metal-free synthetic protocol for azo compound formation by the direct oxidation of hydrazine HN-NH bonds to azo group functionality catalyzed by molecular iodine is disclosed. The strengths of this reactivity include rapid reaction times, low catalyst loadings, use of ambient dioxygen as a stoichiometric oxidant, and ease of experimental set-up and azo product isolation. Mechanistic studies and density functional theory computations offering insight into this reactivity, as well as the events leading to azo group formation are presented. Collectively, this study expands the potential of main-group element iodine as an inexpensive catalyst, while delivering a useful transformation for forming azo compounds.

Chemoselective electrochemical reduction of nitroarenes with gaseous ammonia

Chang, Liu,Li, Jin,Wu, Na,Cheng, Xu

supporting information, p. 2468 - 2472 (2021/04/02)

Valuable aromatic nitrogen compounds can be synthesized by reduction of nitroarenes. Herein, we report electrochemical reduction of nitroarenes by a protocol that uses inert graphite felt as electrodes and ammonia as a reductant. Depending on the cell voltage and the solvent, the protocol can be used to obtain aromatic azoxy, azo, and hydrazo compounds, as well as aniline derivatives with high chemoselectivities. The protocol can be readily scaled up to >10 g with no decrease in yield, demonstrating its potential synthetic utility. A stepwise cathodic reduction pathway was proposed to account for the generations of products in turn.

Heterocoupling of Different Aryl Nitrenes to Produce Asymmetric Azoarenes Using Iron-Alkoxide Catalysis and Investigation of the Cis-Trans Isomerism of Selected Bulky Asymmetric Azoarenes

Groysman, Stanislav,Kurup, Sudheer S.,Wannipurage, Duleeka

, p. 3637 - 3644 (2021/11/12)

Heterocoupling of different aryl nitrenes (originating in organoazides) to produce asymmetric azoarenes using two different iron-alkoxide catalysts is reported. Fe(OCtBu2(3,5-Ph2C6H3))2(THF)2 was previously shown to catalyze the homocoupling of a variety of aryl nitrenes. While bulky nitrenes featuring ortho substituents were coupled more efficiently, coupling of the less bulky meta- and para-substituted aryl nitrenes was also demonstrated. In contrast, the iron(II) complex of a chelating bis(alkoxide) ligand, Fe[OO]Ph(THF)2, was previously shown to efficiently couple nonbulky aryl nitrenes lacking substituents in ortho positions. In the present work, we demonstrate that the combination of two different nitrenes (10 equiv overall, 5 equiv each) with Fe(OCtBu2(3,5-Ph2C6H3))2(THF)2 (10 mol %) produced a statistical or close to statistical distribution (25:25:50 for the two homocoupled products and the heterocoupled product, respectively) for various combinations containing one or two ortho alkyl substituents at one nitrene and a single ortho alkyl group at another. Surprisingly, the combination of Fe[OO]Ph(THF)2 with two different nonbulky organoazides was found to primarily catalyze the homocoupling of the resulting aryl nitrenes (21-49%), with a smaller proportion (~8-15%) of asymmetric product formation. Six different heterocoupled products featuring one or two alkyl groups in the ortho positions were isolated as a mixture of cis and trans isomers at room temperature and characterized by NMR spectroscopy, UV-vis spectroscopy, and high-resolution mass spectrometry. Following their isolation, cis-trans isomerism in these species was investigated. Heating the cis-trans mixture to 60 °C produced the trans isomer cleanly, while shining UV light on the cis-trans mixture significantly increased the amount of the cis isomer (up to 90%). The cis isomer was found to be relatively stable, exhibiting t1/2 values of approximately 10 days at room temperature.

Synthesis of novel 1,2-diarylpyrazolidin-3-one–based compounds and their evaluation as broad spectrum antibacterial agents

Abadi, Ashraf H.,Abdel-Halim, Mohammad,El-Sharkawy, Lina Y.,Engel, Matthias,Fathalla, Reem K.,Mokbel, Salma A.

, (2020/03/30)

There is a continuous need to develop new antibacterial agents with non-traditional mechanisms to combat the nonstop emerging resistance to most of the antibiotics used in clinical settings. We identified novel pyrazolidinone derivatives as antibacterial hits in an in-house library screening and synthesized several derivatives in order to improve the potency and increase the polarity of the discovered hit compounds. The oxime derivative 24 exhibited promising antibacterial activity against E. coli TolC, B. subtilis and S. aureus with MIC values of 4, 10 and 20 μg/mL, respectively. The new lead compound 24 was found to exhibit a weak dual inhibitory activity against both the E. coli MurA and MurB enzymes with IC50 values of 88.1 and 79.5 μM, respectively, which could partially explain its antibacterial effect. A comparison with the previously reported, structurally related pyrazolidinediones suggested that the oxime functionality at position 4 enhanced the activity against MurA and recovered the activity against the MurB enzyme. Compound 24 can serve as a lead for further development of novel and safe antibiotics with potential broad spectrum activity.

Conversion of anilines into azobenzenes in acetic acid with perborate and Mo(VI): correlation of reactivities

Karunakaran,Venkataramanan

, p. 375 - 385 (2019/02/14)

Azobenzenes are extensively used to dye textiles and leather and by tuning the substituent in the ring, vivid colours are obtained. Here, we report preparation of a large number of azobenzenes in good yield from commercially available anilines using sodium perborate (SPB) and catalytic amount of Na2MoO4 under mild conditions. Glacial acetic acid is the solvent of choice and the aniline to azobenzene conversion is zero, first and first orders with respect to SPB, Na2MoO4 and aniline, respectively. Based on the kinetic orders, UV–visible spectra and cyclic voltammograms, the conversion mechanism has been suggested. The reaction rates of about 50 anilines at 20–50?°C and their energy and entropy of activation conform to the isokinetic or Exner relationship and compensation effect, respectively. However, the reaction rates, deduced by the so far adopted method, fail to comply with the Hammett correlation. The specific reaction rates of molecular anilines, obtained through a modified calculation, conform to the Hammett relationship. Thus, this work presents a convenient inexpensive non-hazardous method of preparation of a larger number of azobenzenes, and shows the requirement of modification in obtaining the true reaction rates of anilines in acetic acid and the validity of Hammett relationship in the conversion process, indicating operation of a common mechanism.

Rhodium-Catalyzed Reaction of Azobenzenes and Nitrosoarenes toward Phenazines

Xiao, Yan,Wu, Xiaopeng,Wang, Hepan,Sun, Song,Yu, Jin-Tao,Cheng, Jiang

supporting information, p. 2565 - 2568 (2019/04/30)

A rhodium-catalyzed annulative reaction between azobenzenes and nitrosoarenes has been developed, leading to a series of phenazines in moderate to good yields. This procedure proceeds with sequential chelation-assisted addition of aryl C-H to nitrosoarenes and ring closure by electrophilic attack of azo group to aryl. During this transformation, the azo group served as not only a traceless directing group but also a building block in the final products.

Immobilized antimony species on magnetite: A novel and highly efficient magnetically reusable nanocatalyst for direct and gram-scale reductive-coupling of nitroarenes to azoarenes

Zeynizadeh, Behzad,Faraji, Fariba

, p. 13112 - 13121 (2019/05/10)

In this study, magnetic nanoparticles of Fe3O4@SbFx from the immobilization of SbF3 on magnetite were synthesized. The prepared nanocomposite system was then characterized using scanning electron microscopy, Fourier transform infrared spectroscopy, X-ray diffraction, energy-dispersive X-ray spectroscopy, vibrating sample magnetometry and inductively coupled plasma optical emission spectroscopy. Next, the catalytic activity of Fe3O4@SbFx MNPs was highlighted by one-pot reductive-coupling of aromatic nitro compounds to the corresponding azoarene materials with NaBH4. The reactions were carried out in refluxing EtOH within 6-25 min to afford the products in high yields. The reusability of the Sb-magnetite system was also studied for 6 consecutive cycles without significant loss of catalytic activity. This synthetic protocol provided several advantages in terms of introducing a novel catalytic system based on antimony species for direct and gram-scale preparation of azoarenes from nitroarenes, low loading of the nanocatalyst, mild reaction conditions, using ethanol as a green and economic solvent and high yield of the products.

Super electron donor-mediated reductive transformation of nitrobenzenes: A novel strategy to synthesize azobenzenes and phenazines

Nozawa-Kumada, Kanako,Abe, Erina,Ito, Shungo,Shigeno, Masanori,Kondo, Yoshinori

supporting information, p. 3095 - 3098 (2018/05/22)

The transformation of nitrobenzenes into azobenzenes by pyridine-derived super electron donor 2 is described. This method provides an efficient synthesis of azobenzenes because of not requiring the use of expensive transition-metals, toxic or flammable reagents, or harsh conditions. Moreover, when using 2-fluoronitrobenzenes as substrates, phenazines were found to be obtained. The process affords a novel synthesis of phenazines.

Convenient Electrocatalytic Synthesis of Azobenzenes from Nitroaromatic Derivatives Using SmI2

Zhang, Yu-Feng,Mellah, Mohamed

, p. 8480 - 8486 (2017/12/08)

The synthesis of azobenzenes has been a long-standing challenge. Their current preparation at a preparative or industrial scale requires stoichiometric amounts of environmentally unfriendly reactants. Herein, we demonstrate that the catalytic use of electrogenerated samarium diiodide (SmI2) could promote, in one-step synthesis, the reduction of nitrobenzenes into azobenzenes in high yields under mild reaction conditions. This catalytic procedure contains many elements satisfying a sustainable chemical process for the preparation of one of the most widely wanted family of chemical compounds. The easy synthetic procedure, and the absence of precious metals, bases, and nonhazardous substances, already makes our catalytic procedure a serious alternative to currently available methods. This is a promising method for the efficient synthesis of both symmetrical and asymmetrical azo compounds with a high functional group tolerance.

Aromatic amine oxidation process for preparing aromatic azobenzene method

-

Paragraph 0013; 0017, (2017/10/11)

The invention relates to a method for preparing an aromatic azo compound by utilizing aromatic amine oxidation. In the method, air or oxygen serves as an oxygen source, and under the effect of a catalyst, aromatic amine is oxidized into the aromatic azo compound. The method is high in oxidization efficiency and product yield; the air or the oxygen serves as the oxygen source, and the method is economical and environmentally friendly. The product and the catalyst can be separated easily, and the aftertreatment is simple. The catalyst is easy to reuse, and the method has very good application prospect.

Post a RFQ

Enter 15 to 2000 letters.Word count: 0 letters

Attach files(File Format: Jpeg, Jpg, Gif, Png, PDF, PPT, Zip, Rar,Word or Excel Maximum File Size: 3MB)

1

What can I do for you?
Get Best Price

Get Best Price for 63213-02-5