111-42-2 Usage
Chemical Properties
The USP32–NF27 describes diethanolamine as a mixture of ethanolamines consisting largely of diethanolamine. At about room temperature it is a white, deliquescent solid. Above room temperature diethanolamine is a clear, viscous liquid with a mildly ammoniacal odor.
Diethanolamine is used as surface-active agent in metal-cutting fluids and oils, as a corrosion inhibitor, as a dispersant in agricultural chemical formulations, and as an intermediate in the production of other compounds such as fatty acid condensates of diethanolamine which are extensively used in soaps and cosmetics as emulsifiers, thickeners, wetting agents and detergents (Beyer et al., 1983). In the cosmetic formulations, the concentration of diethanolamine may range from 1 to 25% (National Toxicology Program, 1999a).
Uses
Different sources of media describe the Uses of 111-42-2 differently. You can refer to the following data:
1. Diethanolamine similar to triethanolamine (T775580) is used as a surfactant. It also has the potential to be a corrosion inhibitor by means of chemisorption.
2. To scrub gases as indicated under ethanolamine. Diethanolamine can be used with cracking gases and coal or oil gases which contain carbonyl sulfide that would react with monoethanolamine. As rubber chemicals intermediate. In the manufacture of surface active agents used in textile specialties, herbicides, petroleum demulsifiers. As emulsifier and dispersing agent in various agricultural chemicals, cosmetics, and pharmaceuticals. In the production of lubricants for the textile industry. As humectant and softening agent. In organic syntheses.
3. Diethanolamine is used in the production ofsurface-active agents and lubricants for thetextile industry; as an intermediate for rubberchemicals; as an emulsifier; as a humectantand softening agent; as a detergent in paints,shampoos, and other cleaners; and as anintermediate in resins and plasticizers.
Preparation
Diethanolamine is prepared commercially by the ammonolysis of ethylene oxide. The reaction yields a mixture of monoethanolamine, diethanolamine, and triethanolamine which is separated to obtain the pure products.
Definition
ChEBI: A member of the class of ethanolamines that is ethanolamine having a N-hydroxyethyl substituent.
Production Methods
Diethanolamine is produced with monoethanolamine and triethanolamine by
ammonolysis of ethylene oxide; diethanolamine is then separated by distillation
(Mullins 1978). In 1984, 166.2 million pounds of diethanolamine were produced
in the United States (USTIC 1985).
General Description
Oily colorless liquid or solid white crystals. Slight rotten fish or ammonia odor. Denser than water.
Air & Water Reactions
Water soluble.
Reactivity Profile
2,2'-Iminodiethanol is an aminoalcohol. Amines are chemical bases. They neutralize acids to form salts plus water. These acid-base reactions are exothermic. The amount of heat that is evolved per mole of amine in a neutralization is largely independent of the strength of the amine as a base. Amines may be incompatible with isocyanates, halogenated organics, peroxides, phenols (acidic), epoxides, anhydrides, and acid halides. Flammable gaseous hydrogen is generated by amines in combination with strong reducing agents, such as hydrides. 2,2'-Iminodiethanol is hygroscopic. 2,2'-Iminodiethanol may be sensitive to exposure to air and light. 2,2'-Iminodiethanol can react with oxidizing materials, acids, CO2, copper alloys, aluminum, zinc, galvanized iron and copper.
Health Hazard
The irritant action of diethanolamine on theeyes can be severe. Direct contact of thepure liquid can impair vision. Irritation onthe skin may be mild to moderate. Theacute oral toxicity of this compound waslow in test animals. The toxic symptomsinclude somnolence, excitement, and musclecontraction.LD50 value, oral (mice): 3300 mg/kgThe vapor pressure of diethanolamine isnegligibly low (<0.01 torr at 20°C (68°F)).At ordinary temperature, this compoundshould not cause any inhalation hazard. Themists, fumes, or vapors at high temperatures,however, can produce eye, skin, and respiratory tract irritation.In contrast to monoethanolamine, dieth anolamine administered to mice at 1125 mg/kg/day caused no change in maternal mortality, litter size, or percentage survival of thepups (Environmental Health Research andTesting 1987).
Flammability and Explosibility
Nonflammable
Chemical Reactivity
Reactivity with Water : No reaction; Reactivity with Common Materials: No reaction; Stability During Transport: Stable; Neutralizing Agents for Acids and Caustics: Flush with water; Polymerization: Not pertinent; Inhibitor of Polymerization: Not pertinent.
Pharmaceutical Applications
Diethanolamine is primarily used in pharmaceutical formulations as a buffering agent, such as in the preparation of emulsions with fatty acids. In cosmetics and pharmaceuticals it is used as a pH adjuster and dispersant.
Diethanolamine has also been used to form the soluble salts of active compounds, such as iodinated organic acids that are used as contrast media. As a stabilizing agent, diethanolamine prevents the discoloration of aqueous formulations containing hexamethylenetetramine-1,3-dichloropropene salts.
Diethanolamine is also used in cosmetics.
Industrial uses
Diethanolamine undergoes reactions characteristic of secondary amines and of
alcohols. Two industrially important reactions of the ethanolamines involve
reaction with carbon dioxide or hydrogen sulfide to yield water soluble salts, and
reaction with long chain fatty acids to form neutral ethanolamine soaps (Mullins
1978). Substituted ethanolamine compounds, such as soaps, are used extensively
as emulsifiers, thickeners, wetting agents, and detergents in cosmetic formulations
(including skin cleaners, creams, and lotions) (Beyer et al 1983).
Diethanolamine is used as a dispersing agent in various agricultural chemicals,
as an absorbent for acidic gases (hydrogen sulfide and carbon dioxide), as a
humectant, as an intermediate in the synthesis of morpholine, as a surface-active
agent in cutting fluids, as a corrosion inhibitor, as a component in textile specialty
agents, and as a secondary vulcanization accelerator in the rubber industry.
Diethanolamine is also used in cleaners and pharmaceutical ointments, in polyurethane
formulations, in herbicides, and in a variety of organic syntheses (Beyer
et al 1983; Mullins 1978; Windholz 1983). Diethanolamine is permitted in articles
intended for use in the production, processing, or packaging of food (CFR 1981),
and is permitted as a secondary direct food additive from use in delinting
cottonseed in the production of cottonseed oil or meal cake (Fed. Reg. 1982).
Because of the wide industrial and consumer uses, large amounts of this chemical
are discharged into water and sewage in an unaltered form (Yordy and Alexander
1981).
Contact allergens
Diethanolamine is contained in many products, as a
metalworking fuid. Traces may exist in other etha-
nolamine-containing fuids.
Safety Profile
Poison by
intraperitoneal route. Moderately toxic by
ingestion and subcutaneous routes. Mildly
toxic by skin contact. A severe eye and mild
skin irritant. Experimental reproductive
effects. Combustible when exposed to heat
or flame; can react with oxidizing materials.
To fight fire, use alcohol foam, water, Co2,
dry chemical. When heated to
decomposition it emits toxic fumes such as
NOx. See also AMINES.
Safety
Diethanolamine is used in topical and parenteral pharmaceutical formulations, with up to 1.5% w/v being used in intravenous infusions. Experimental studies in dogs have shown that intravenous administration of larger doses of diethanolamine results in sedation, coma, and death.Animal toxicity studies suggest that diethanolamine is less toxic than monoethanolamine, although in rats the oral acute and subacute toxicity is greater. Diethanolamine is said to be heptacarcinogenic in mice and has also been reported to induce hepatic choline deficiency in mice.Diethanolamine is an irritant to the skin, eyes, and mucous membranes when used undiluted or in high concentration. However, in rabbits, aqueous solutions containing 10% w/v diethanolamine produce minor irritation. The lethal human oral dose of diethanolamine is estimated to be 5–15g/kg body-weight. The US Cosmetic Ingredient Review Expert Panel evaluated diethanolamine and concluded that it is safe for use in cosmetic formulations designed for discontinuous, brief use followed by thorough rinsing from the surface of the skin. In products intended for prolonged contact with the skin, the concentration of ethanolamines should not exceed 5%. Diethanolamine should not be used in products containing N-nitrosating agents.LD50 (guinea pig, oral): 2.0g/kgLD50 (mouse, IP): 2.3g/kg LD50 (mouse, oral): 3.3g/kgLD50 (rabbit, skin): 12.2g/kg LD50 (rat, IM): 1.5g/kgLD50 (rat, IP): 0.12g/kgLD50 (rat, IV): 0.78g/kgLD50 (rat, oral): 0.71g/kgLD50 (rat, SC): 2.2g/kg
Potential Exposure
Diethanolamine is present in machining and grinding fluids and has been detected in workplace air in the metal manufacturing industry. It was present in bulk cutting fluids at levels ranging from 4 to 5% (Kenyon et al., 1993). Diethanolamine has also been reported to be present in wetting fluids used in road paving. A level of 0.05 mg/m3 was detected in a stationary sample at a slurry machine discharging a bitumen emulsion containing 0.2% of the amine. All personal exposures were below the detection limit (0.02 mg/m3) (Levin et al., 1994). In a German study (1992–94), diethanolamine was measured in samples of metalworking fluids in a range of 0–44% (n = 69). The number of samples with diethanolamine present steadily declined from 90% to 60% over the study period (Pfeiffer et al., 1996).
Carcinogenicity
When DEA was administered cutaneously
to pregnant rats and rabbits during organogenesis,
developmental toxicity (skeletal variations)
was observed only in the rat and only at
doses causing significant maternal toxicity.
The 2003 ACGIH threshold limit valuetime-
weighted average (TLV-TWA) is 3ppm
(13mg/m3).
Metabolism
Treatment of Wistar or Sherman rats with diethanolamine caused increases in the
formation of hepatic phospholipids (Artom et al 1949). In addition, dietary
administration led to incorporation of ethanolamine into hepatic phospholipids
(Artom et al 1949), and repeated oral administration of diethanolamine in drinking
water (one to three wk) at a dose of 320 mg/kg/d was found to reduce the level of
incorporation of ethanolamine and choline into hepatic and renal phospholipids in
Sprague-Dawley rats (Barbee and H?rtung 1979b).
Dermal absorption of diethanolamine is suggested to occur in rats since Nnitrosodiethanolamine
was excreted in the urine of male Sprague-Dawley rats
which had been administered diethanolamine by dermal application and given
nitrite in their drinking water (Preussman et al 1981).
storage
Diethanolamine is hygroscopic and light- and oxygen-sensitive; it should be stored in an airtight container, protected from light, in a cool, dry place.
Purification Methods
Fractionally distil the amine twice, then fractionally crystallise it from its melt. Its solubility in H2O is 10% at 20o. [Perrin & Dempsey Buffers for pH and Metal Ion Control Chapman & Hall, London 1974, Beilstein 4 H 283, 4 II 729, 4 III 689, 4 IV 1514.]
Incompatibilities
Diethanolamine is a secondary amine that contains two hydroxy groups. It is capable of undergoing reactions typical of secondary amines and alcohols. The amine group usually exhibits the greater activity whenever it is possible for a reaction to take place at either the amine or a hydroxy group.Diethanolamine will react with acids, acid anhydrides, acid chlorides, and esters to form amide derivatives, and with propylene carbonate or other cyclic carbonates to give the corresponding carbonates. As a secondary amine, diethanolamine reacts with aldehydes and ketones to yield aldimines and ketimines. Diethanolamine also reacts with copper to form complex salts. Discoloration and precipitation will take place in the presence of salts of heavy metals.
Waste Disposal
Controlled incineration; incinerator equipped with a scrubber or thermal unit to reduce
nitrogen oxides emissions
Regulatory Status
Included in the FDA Inactive Ingredients Database (IV infusions, ophthalmic solutions, and topical preparations). Included in medicines licensed in the UK. Included in the Canadian List of Acceptable Non-medicinal Ingredients.
Check Digit Verification of cas no
The CAS Registry Mumber 111-42-2 includes 6 digits separated into 3 groups by hyphens. The first part of the number,starting from the left, has 3 digits, 1,1 and 1 respectively; the second part has 2 digits, 4 and 2 respectively.
Calculate Digit Verification of CAS Registry Number 111-42:
(5*1)+(4*1)+(3*1)+(2*4)+(1*2)=22
22 % 10 = 2
So 111-42-2 is a valid CAS Registry Number.
InChI:InChI=1/C4H11NO2/c6-3-1-5-2-4-7/h5-7H,1-4H2
111-42-2Relevant articles and documents
Chain Decomposition of Aqueous Trietanolamine
Schwarz, Harold A.
, p. 3431 - 3435 (1982)
A radiation-induced chain decomposition of aqueous triethanolamine into acetaldehyde and diethanolamine is reported.Chain length over 1000 have been observed, depending on pH, concentration, and radiation intensity.The chain propagation steps include OH group migration in the 2-hydroxy-1-(diethanolamino)ethyl radical and NR2 migration in 1-hydroxy-2-(diethanolamine)ethyl radical, each producing a 2-hydroxy-2-(diethanolamine)ethyl radical.Free-radical spectra and rate constants are given.Studies of diethanolamine and diethylethanolamine solutions gave similar free-radical spectra but much shorter chains.
Lipase-catalyzed synthesis of fatty acid diethanolamides.
Liu,Nag,Shaw
, p. 5761 - 5764 (2001)
Diethanolamides are nonionic emulsifiers widely used in industries such as cosmetics and as corrosion inhibitors. Candida antarctica lipase (Novozym 435) was used to catalyze the amidation of various fatty acids with diethanolamine. Contents of fatty acid
Temperature dependency of the equilibrium constant for the formation of carbamate from diethanolamine
Aroua,Amor,Haji-Sulaiman
, p. 692 - 696 (1997)
The equilibrium constant for the formation of diethanolamine carbamate was determined experimentally at (303, 313, 323, and 331) K for ionic strengths up to 1.8 mol dm-3, the inert electrolyte being NaClO4. A linear relationship was found to hold between log K and I0.5. The thermodynamical constant has been determined and expressed by the equation log K1 = -5.12 + 1.781 × 103 K/T.
A Modified Method for the Determination of N-Nitrosodiethanolamine in Coconut Diethanolamide Using HPLC with Dual-Wavelength UV-Vis Detector
Mostafalu, Ramin,Banaei, Abbas,Riazi, Mohammad Hadi,Ghorbani, Fatemeh
, p. 431 - 435 (2016)
A simple and novel method based on high-performance liquid chromatography with dual-wavelength ultraviolet detection at 234 and 254 nm has been developed for the determination of underivatized N-nitrosodiethanolamine in coconut diethanolamide. The correlation coefficient obtained shows that the method is correct.
Boronic Ester Based Vitrimers with Enhanced Stability via Internal Boron-Nitrogen Coordination
Zhang, Xiaoting,Wang, Shujuan,Jiang, Zikang,Li, Yu,Jing, Xinli
supporting information, p. 21852 - 21860 (2021/01/11)
Boron-containing polymers have many applications resulting from their prominent properties. Organoboron species with reversible B-O bonds have been successfully employed for the fabrication of various self-healing/healable and reprocessable polymers. However, the application of the polymers containing boronic ester or boroxine linkages is limited because of their instability to water. Herein, we report the hydrolytic stability and dynamic covalent chemistry of the nitrogen-coordinating cyclic boronic diester (NCB) linkages, and a new class of vitrimers based on NCB linkages is developed through the chemical reactions of reactive hydrogen with isocyanate. Thermodynamic and kinetic studies demonstrated that NCB linkages exhibit enhanced water and heat resistance, whereas the exchange reactions between NCB linkages can take place upon heating without any catalyst. The model compounds of NCBC-X1 and NCBC-X2 containing a urethane group and urea group, respectively, also showed higher hydrolytic stability compared to that of conventional boronic esters. Polyurethane vitrimers and poly(urea-urethane) vitrimers based on NCB linkages exhibited excellent solvent resistance and mechanical properties like general thermosets, which can be repaired, reprocessed, and recycled via the transesterification of NCB linkages upon heating. Especially, vitrimers based on NCB linkages presented improved stability to water and heat compared to those through conventional boronic esters because of the existence of N → B internal coordination. We anticipate that this work will provide a new strategy for designing the next generation of sustainable materials.
PROCESS FOR PRODUCING ALKANOLAMINE
-
Paragraph 0046-0053, (2019/02/19)
The present invention provides a method of producing an ethanolamine, with a low production ratio of a dialkanolamine (for example, less than 30% by weight). A process for producing an alkanolamine of the present invention includes reacting an alkylene oxide with ammonia to obtain a reaction product containing a monoalkanolamine, a dialkanolamine, and a trialkanolamine; separating the dialkanolamine from the reaction product; and recycling at least a portion of the dialkanolamine for the reaction of an alkylene oxide with ammonia, wherein in the recycling step, the dialkanolamine is supplied in a molar ratio of the alkylene oxide (moles) to a total amount (moles) of ammonia and the dialkanolamine of 0.08 or more and less than 0.26.
ZEOLITE CATALYZED PROCESS FOR THE AMINATION OF ALKYLENE OXIDES
-
Page/Page column 24; 27-28, (2019/12/25)
The present invention relates to a process for the conversion of ethylene oxide to 2- aminoethanol and/or Di(2-hydroxyethyl)amine comprising (i) providing a catalyst comprising a zeolitic material comprising YO2 and X2O3 in its frame- work structure, wherein Y is a tetravalent element and X is a trivalent element, wherein the zeo- litic material has a framework-type structure selected from the group consisting of MFI and/or MEL, including MEL/MFI intergrowths, and wherein the zeolitic material contains one or more rare earth elements; (ii) providing a mixture in the liquid phase comprising ethylene oxide and ammonia; (iii) contacting the catalyst provided in (i) with the mixture in the liquid phase provided in (ii) for converting ethylene oxide to 2-aminoethanol and/or Di(2-hydroxyethyl)amine, wherein the catalyst provided in (i) is obtained and/or obtainable by a process comprising load- ing one or more salts of the one or more rare earth elements into the pores of the porous structure of the zeolitic material and optionally on the surface of the zeolitic material.
METHOD FOR PRODUCING CIS- AND TRANS-ENRICHED MDACH
-
, (2017/09/23)
A process for preparing trans-enriched MDACH, including: distilling an MDACH starting mixture in the presence of an auxiliary, which is an organic compound having a molar mass of 62 to 500 g/mol, a boiling point at least 5° C. above the boiling point of cis,cis-2,6-diamino-1-methylcyclohexane, and 2 to 4 functional groups, each of which is independently an alcohol group or a primary, secondary or tertiary amino group. The MDACH starting mixture includes 0 to 100% by weight of 2,4-MDACH and 0 to 100% by weight of 2,6-MDACH, based on the total amount of MDACH present in the MDACH starting mixture. The MDACH starting mixture includes both trans and cis isomers. Trans-enriched MDACH includes 0 to 100% by weight of 2,4-MDACH and 0 to 100% by weight of 2,6-MDACH, where the proportion of trans isomers in the mixture is higher than the proportion of trans isomers in the MDACH starting mixture.
AgI/TMG-Promoted Cascade Reaction of Propargyl Alcohols, Carbon Dioxide, and 2-Aminoethanols to 2-Oxazolidinones
Li, Xue-Dong,Song, Qing-Wen,Lang, Xian-Dong,Chang, Yao,He, Liang-Nian
, p. 3182 - 3188 (2017/10/03)
Chemical valorization of CO2 to access various value-added compounds has been a long-term and challenging objective from the viewpoint of sustainable chemistry. Herein, a one-pot three-component reaction of terminal propargyl alcohols, CO2, and 2-aminoethanols was developed for the synthesis of 2-oxazolidinones and an equal amount of α-hydroxyl ketones promoted by Ag2O/TMG (1,1,3,3-tetramethylguanidine) with a TON (turnover number) of up to 1260. By addition of terminal propargyl alcohol, the thermodynamic disadvantage of the conventional 2-aminoethanol/CO2 coupling was ameliorated. Mechanistic investigations including control experiments, DFT calculation, kinetic and NMR studies suggest that the reaction proceeds through a cascade pathway and TMG could activate propargyl alcohol and 2-aminoethanol through the formation of hydrogen bonds and also activate CO2.
NMR study of the composition of aqueous 2-aminoethanol solution used for absorption of carbon dioxide from fuel gases
Talzi
, p. 927 - 931 (2016/09/04)
The compositions of aqueous 2-aminoethanol solutions used in industry for absorption of carbon dioxide resulting from combustion of natural gas have been determined by1H and13C NMR spectroscopy. The absorption process does not involve generally accepted paths of thermal decomposition of the absorbent in the reaction with carbon dioxide, but the main path is non-oxidative decomposition of 2-aminoethanol into ammonia and ethylene oxide. Splitting of the NMR signals of carbamate anion formed by reaction of 2-aminoethanol with carbon dioxide has been rationalized by specific structure of the anion due to intramolecular hydrogen bonding.