71111-07-4Relevant articles and documents
Efficient and highly selective iron-catalyzed reduction of nitroarenes
Jagadeesh, Rajenahally V.,Wienhoefer, Gerrit,Westerhaus, Felix A.,Surkus, Annette-Enrica,Pohl, Marga-Martina,Junge, Henrik,Junge, Kathrin,Beller, Matthias
, p. 10972 - 10974 (2011)
Pyrolysis of iron-phenanthroline complexes supported on carbon leads to highly selective catalysts for the reduction of structurally diverse nitroarenes to anilines in 90-99% yields. Excellent chemoselectivity for the nitro group reduction is demonstrated.
Fluorescence of aromatic amines and their fluorescamine derivatives for detection of explosive vapors
Eastwood, Delyle,Fernandez, Carlos,Yoon, B. Yunghoon,Sheaff, Chrystal N.,Wai, Chien M.
, p. 958 - 963 (2006)
Nitroaromatics (such as dinitrotoluene, trinitrotoluene, and nitrobenzene) found in explosive vapors from buried landmines can be reduced to aminoaromatics by a novel process involving Pd metal nanocatalysts prepared in supercritical fluid carbon dioxide and supported on multi-walled carbon nanotubes. These aminoaromatics are fluorescent and, if desired, the fluorescence yield can be increased and the fluorescence maxima shifted further toward the red by reaction with appropriate derivatizing agents such as fluorescamine. Corrected spectra for these chemicals and their derivatives are included. Subpicomolar detection limits have already been achieved using a laboratory spectrofluorometer with a 150 W Xe arc lamp. Using lasers as excitation sources, this approach has the potential for developing a field sensor competitive with other methods currently used for detecting explosive vapors from land mines.
Facile assembly of nanosheet array-like CuMgAl-layered double hydroxide/rGO nanohybrids for highly efficient reduction of 4-nitrophenol
Dou, Liguang,Zhang, Hui
, p. 18990 - 19002 (2016)
A series of novel hierarchical nanosheet array-like hybrids xCu-LDH/rGO (xCu-LDH: CuxMg3?xAl-layered double hydroxide (x = 0.5, 1.0, and 1.5), rGO: reduced graphene oxide) were assembled via a facile and green aqueous-phase coprecipitation method. Systematic characterization suggests that the hybrids were constructed by hexagonal LDH nanoplates (~70 nm × 4.5 nm) interdigitated vertical to the surface of single-layer rGO. All the xCu-LDH/rGO hybrids exhibit a remarkable higher activity for catalytic reduction of 4-nitrophenol (4-NP) compared with pure Cu-LDH, commercial Pt/C and other recently reported Cu-related catalysts. These findings were carefully explained by deep study of the catalyst treated with NaBH4, and the xCu-LDH/rGO hybrids as a potential Cu2O reservoir were revealed for the first time. Typically for 1.0Cu-LDH/rGO, a part of Cu2+ ions on LDH layers were instantaneously in situ reduced to well-dispersed ultrafine Cu2O nanoparticles (~6.8 nm) by NaBH4 in an aqueous reduction system and thus formed relatively strong interaction between Cu2O and LDH/rGO greatly favoring enhanced activity for the reduction of 4-NP, other nitroarenes and organic dyes at room temperature. The excellent activity of the xCu-LDH/rGO hybrids can be attributed to the possible Cu2O-Cu-LDH-rGO three-phase synergistic effect, increased adsorption capacity for reactants via π-π stacking, and unique nanoarray-like morphology of the hybrids. Moreover, the 1.0Cu-LDH/rGO can be cycled for 20 runs without significant loss of activity, giving the hybrid long-term stability.
Hydrogenation of 2,4-dinitrotoluene to 2,4-diaminotoluene over platinum nanoparticles in a high-pressure slurry reactor
Saboktakin, Mohammad Reza,Tabatabaie, Roya M.,Maharramov, Abel,Ramazanov, Mohammad Ali
, p. 1455 - 1463 (2011)
More stringent requirements for reducing the content of aromatics have brought increasing attention to new catalysts involved in hydrotreating process. The dependence of the 2,4-dinitrotoluene hydrogenation rate on catalyst particle size and kinetic parameters in ethanol-water-diaminotoluene three-component solvent over Pt/C nanoparticle catalyst has been studied. The investigation of the effect of particle size of catalyst on the rate of the reaction corresponds to the zero reaction order. An optimum set of conditions for reaction occurrence is established.
Preparation and catalytic performance of active metal sintered membrane reactor anchored with Pt atoms
Ren, Xiaoliang,Wang, Shufang,Ding, Xiaoshu,Zhang, Dongsheng,Wang, Yanji
, p. 2848 - 2853 (2021/01/28)
In the chemical industry, reactors are typically designed and filled with supported catalyst particles. However, the intrinsic problems associated with the internal/external diffusion effect and catalyst separation/loss in these traditional reactors can be very challenging to mitigate. To address these issues, herein, an active metal sintered membrane reactor anchored with Pt atoms was successfully developed, and applied into continuous, liquid-phase, hydrogenation processes. The catalyzing reactions transpired on the active sites that were fastened onto the surface of the reactor's microchannels. As a result, the mass transfer at the gas-liquid-solid three-phase was greatly enhanced, and an incredibly high reaction efficiency was obtained. The novel, active reactor demonstrated a superior catalytic performance and stability to nitrobenzene (NB) hydrogenation at 120 °C and 0.5 MPa H2, which enabled an aniline (ANI) yield of 19.28 molANI h-1 L-1. This work opens a new window for the design of high-performance gas-liquid-solid reactor toward multiphase catalytic reactions. This journal is
Designing of Highly Active and Sustainable Encapsulated Stabilized Palladium Nanoclusters as well as Real Exploitation for Catalytic Hydrogenation in Water
Patel, Anish,Patel, Anjali
, p. 803 - 820 (2020/08/12)
Abstract: Encapsulated nanoclusters based on palladium, 12-tunstophosphoric acid and silica was designed by simple wet impregnation methodology. The catalyst was found to be very efficient towards cyclohexene hydrogenation up to five catalytic runs with substrate/catalyst ratio of 4377/1 at 50?°C as well as for alkene, aldehyde, nitro and halogen compounds. Graphic Abstract: Silica encapsulated Pd nanoclusters stabilized by 12-tungstophosphoric acid is proved to be sustainable and excellent for water mediated hydrogenation reaction with very high catalyst to substrate ratio as well as TON.[Figure not available: see fulltext.]
Fabrication of palladium nanocatalyst supported on magnetic eggshell and its catalytic character in the catalytic reduction of nitroarenes in water
?al??kan, Melike,Akay, Sema,Baran, Talat,Kayan, Berkant
, (2021/07/21)
Aromatic nitro compounds, which have good solubility in water, are highly toxic and non-biodegradable are one of the most important industrial pollutants and have negative effects on human health, aquatic life and the environment. Therefore, the elimination of these harmful organic compounds has become an issue of great importance. For this, in this study we have developed a palladium nanocatalyst supported on Fe3O4-coated eggshell and characterized by FT-IR, XRD, XPS, FE-SEM, TG/DTG, BET, TEM and EDS techniques (Pd-Fe3O4-ES). Also, the quantitative analysis of Pd was determined using ICP-OES. The catalytic behavior of the designed Pd-Fe3O4-ES nanocatalyst was investigated against the catalytic reduction of several highly toxic nitro compounds using NaBH4 in water at room temperature. The progress of the reduction was followed using high performance liquid chromatography (HPLC). The catalytic studies revealed that the nitro compounds were converted into the desired amines by the Pd-Fe3O4-ES nanocatalyst using a very low dose of catalyst (15 mg) and short-duration reactions (81–360 s) in aqueous medium at ambient temperature. Furthermore, the Pd-Fe3O4-ES nanocatalyst showed good catalytic stability by retaining its activity after the fifth catalytic run.
Depolymerization of Technical-Grade Polyamide 66 and Polyurethane Materials through Hydrogenation
Zhou, Wei,Neumann, Paul,Al Batal, Mona,Rominger, Frank,Hashmi, A. Stephen K.,Schaub, Thomas
, p. 4176 - 4180 (2020/11/30)
Chemical recycling provides a promising solution to utilize plastic waste. Here, a catalytic hydrogenative depolymerization of polyamide 66 (PA 66) and polyurethane (PU) was developed. The system employed Ru pincer complexes at high temperature (200 °C) in THF solution, and even technical-grade polymers could be hydrogenated with satisfactory yields under these conditions. A comparison of the system with some known heterogeneous catalysts as well as catalyst poisoning tests supported the homogeneity of the system. These results demonstrate the potential of chemical recycling to regain building blocks for polymers and will be interesting for the further development of polymer hydrogenation.
Superhydrophobic nickel/carbon core-shell nanocomposites for the hydrogen transfer reactions of nitrobenzene and N-heterocycles
Duan, Zhiying,Liu, Fangfang,Pang, Shaofeng,Su, Qiong,Wang, Yanbin,Xie, Xin,Zhang, Ping,Zhang, Yujing,Zhou, Feng
, p. 1996 - 2010 (2020/04/07)
In this work, catalytic hydrogen transfer as an effective, green, convenient and economical strategy is for the first time used to synthesize anilines and N-heterocyclic aromatic compounds from nitrobenzene and N-heterocycles in one step. Nevertheless, how to effectively reduce the possible effects of water on the catalyst by removal of the by-product water, and to further introduce water as the solvent based on green chemistry are still challenges. Since the structures and properties of carbon nanocomposites are easily modified by controllable construction, a one step pyrolysis process is used for controllable construction of micro/nano hierarchical carbon nanocomposites with core-shell structures and magnetic separation performance. Using various characterization methods and model reactions the relationship between the structure of Ni?NCFs (nickel-nitrogen-doped carbon frameworks) and catalytic performance was investigated, and the results show that there is a positive correlation between the catalytic performance and hydrophobicity of catalysts. Besides, the possible catalytically active sites, which are formed by the interaction of pyridinic N and graphitic N in the structure of nitrogen-doped graphene with the surfaces of Ni nanoparticles, should be pivotal to achieving the relatively high catalytic performance of materials. Due to its unique structure, the obtained Ni?NCF-700 catalyst with superhydrophobicity shows extraordinary performances toward the hydrogen transfer reaction of nitrobenzene and N-heterocycles in the aqueous state; meanwhile, it was also found that Ni?NCF-700 still retained its excellent catalytic activity and structural integrity after three cycles. Compared with traditional catalytic systems, our catalytic systems offer a highly effective, green and economical alternative for nitrobenzene and N-heterocycle transformation, and may open up a new avenue for simple construction of structure and activity defined carbon nanocomposite heterogeneous catalysts with superhydrophobicity.
Copper(II) complex with oxazoline ligand: Synthesis, structures and catalytic activity for nitro compounds reduction
Du, Jun,Gao, Li-Li,Jia, Wei-Guo,Li, Mei,Zhi, Xue-Ting
, (2020/05/14)
The Cu(II) complexes bearing bisoxazolines, tridentate pincer pybox and terpyridine ligands have been synthesized and fully characterized. The molecular structures of copper complexes 1a and 1c were confirmed by single-crystal X-ray diffraction methods. These copper complexes highly catalyzed nitro compounds reduction to aniline and its derivatives in the presence of NaBH4 reducing agent in water solvent. The complex 1e was an efficient catalyst toward nitro compounds reduction with wide functional group substrate scope and aliphatic nitro compounds.