Welcome to LookChem.com Sign In|Join Free

CAS

  • or

7396-58-9

Post Buying Request

7396-58-9 Suppliers

Recommended suppliersmore

  • Product
  • FOB Price
  • Min.Order
  • Supply Ability
  • Supplier
  • Contact Supplier

7396-58-9 Usage

Uses

N-?Methyldidecylamine is a reagent used in the synthesis of novel anthraquinone compounds which act as potential anticancer compounds.

General Description

A clear slightly light yellow liquid with a fishlike odor. Insoluble in water and less dense than water. Hence floats on water. Contact may irritate skin, eyes and mucous membranes. May be toxic by ingestion, inhalation or skin absorption. Used to make other chemicals.

Air & Water Reactions

Insoluble in water.

Reactivity Profile

DIDECYLMETHYL AMINE neutralizes acids in exothermic reactions to form salts plus water. May be incompatible with isocyanates, halogenated organics, peroxides, phenols (acidic), epoxides, anhydrides, and acid halides. Flammable gaseous hydrogen may be generated in combination with strong reducing agents, such as hydrides.

Health Hazard

TOXIC; inhalation, ingestion or skin contact with material may cause severe injury or death. Contact with molten substance may cause severe burns to skin and eyes. Avoid any skin contact. Effects of contact or inhalation may be delayed. Fire may produce irritating, corrosive and/or toxic gases. Runoff from fire control or dilution water may be corrosive and/or toxic and cause pollution.

Fire Hazard

Combustible material: may burn but does not ignite readily. When heated, vapors may form explosive mixtures with air: indoors, outdoors and sewers explosion hazards. Contact with metals may evolve flammable hydrogen gas. Containers may explode when heated. Runoff may pollute waterways. Substance may be transported in a molten form.

Check Digit Verification of cas no

The CAS Registry Mumber 7396-58-9 includes 7 digits separated into 3 groups by hyphens. The first part of the number,starting from the left, has 4 digits, 7,3,9 and 6 respectively; the second part has 2 digits, 5 and 8 respectively.
Calculate Digit Verification of CAS Registry Number 7396-58:
(6*7)+(5*3)+(4*9)+(3*6)+(2*5)+(1*8)=129
129 % 10 = 9
So 7396-58-9 is a valid CAS Registry Number.
InChI:InChI=1/C21H45N/c1-4-6-8-10-12-14-16-18-20-22(3)21-19-17-15-13-11-9-7-5-2/h4-21H2,1-3H3

7396-58-9SDS

SAFETY DATA SHEETS

According to Globally Harmonized System of Classification and Labelling of Chemicals (GHS) - Sixth revised edition

Version: 1.0

Creation Date: Aug 12, 2017

Revision Date: Aug 12, 2017

1.Identification

1.1 GHS Product identifier

Product name N-Methyldidecylamine

1.2 Other means of identification

Product number -
Other names di(n-decyl)(methyl)amine

1.3 Recommended use of the chemical and restrictions on use

Identified uses For industry use only. Intermediates,Surface active agents
Uses advised against no data available

1.4 Supplier's details

1.5 Emergency phone number

Emergency phone number -
Service hours Monday to Friday, 9am-5pm (Standard time zone: UTC/GMT +8 hours).

More Details:7396-58-9 SDS

7396-58-9Relevant articles and documents

Simple RuCl3-catalyzed N-Methylation of Amines and Transfer Hydrogenation of Nitroarenes using Methanol

Sarki, Naina,Goyal, Vishakha,Tyagi, Nitin Kumar,Puttaswamy,Narani, Anand,Ray, Anjan,Natte, Kishore

, p. 1722 - 1729 (2021/04/19)

Methanol is a potential hydrogen source and C1 synthon, which finds interesting applications in both chemical synthesis and energy technologies. The effective utilization of this simple alcohol in organic synthesis is of central importance and attracts scientific interest. Herein, we report a clean and cost-competitive method with the use of methanol as both C1 synthon and H2 source for selective N-methylation of amines by employing relatively cheap RuCl3.xH2O as a ligand-free catalyst. This readily available catalyst tolerates various amines comprising electron-deficient and electron-donating groups and allows them to transform into corresponding N-methylated products in moderate to excellent yields. In addition, few marketed pharmaceutical agents (e. g., venlafaxine and imipramine) were also successfully synthesized via late-stage functionalization from readily available feedstock chemicals, highlighting synthetic value of this advanced N-methylation reaction. Using this platform, we also attempted tandem reactions with selected nitroarenes to convert them into corresponding N-methylated amines using MeOH under H2-free conditions including transfer hydrogenation of nitroarenes-to-anilines and prepared drug molecules (e. g., benzocaine and butamben) as well as key pharmaceutical intermediates. We further enable one-shot selective and green syntheses of 1-methylbenzimidazole using ortho-phenylenediamine (OPDA) and methanol as coupling partners.

Commercial Pd/C-Catalyzed N-Methylation of Nitroarenes and Amines Using Methanol as Both C1 and H2 Source

Goyal, Vishakha,Gahtori, Jyoti,Narani, Anand,Gupta, Piyush,Bordoloi, Ankur,Natte, Kishore

, p. 15389 - 15398 (2019/12/04)

Herein, we report commercially available carbon-supported-palladium (Pd/C)-catalyzed N-methylation of nitroarenes and amines using MeOH as both a C1 and a H2 source. This transformation proceeds with high atom-economy and in an environmentally friendly way via borrowing hydrogen mechanism. A total of >30 structurally diverse N-methylamines, including bioactive compounds, were selectively synthesized with isolated yields of up to 95%. Furthermore, selective N-methylation and deuteration of nimesulide, a nonsteroidal anti-inflammatory drug, were realized through the late-stage functionalization.

TERTIARY AMINE PREPARATION PROCESS

-

Paragraph 0104-0106; 0119-0121, (2013/11/06)

The present invention relates to a process for producing a tertiary amine, including the following steps (1) and (2): Step (1); introducing an alcohol having 1 to 36 carbon atoms and a raw amine represented by the following general formula (I) into a first reaction vessel to react with each other in the presence of a catalyst and hydrogen, and then continuing the reaction while discharging water produced in the reaction and a hydrogen-containing gas out of a reaction system in the first reaction vessel: R1R2NH??(I) wherein R1 and R2 are each independently a hydrogen atom or a hydrocarbon group having 1 to 36 carbon atoms; and Step (2): introducing the hydrogen-containing gas discharged from the first reaction vessel into a second reaction vessel to reduce an amount of carbon monoxide contained in the hydrogen-containing gas, and then introducing a part or whole of the hydrogen-containing gas into the first reaction vessel.

Post a RFQ

Enter 15 to 2000 letters.Word count: 0 letters

Attach files(File Format: Jpeg, Jpg, Gif, Png, PDF, PPT, Zip, Rar,Word or Excel Maximum File Size: 3MB)

1

What can I do for you?
Get Best Price

Get Best Price for 7396-58-9