Welcome to LookChem.com Sign In|Join Free

CAS

  • or
(R)-(1-(3-nitrophenyl))ethanol is a chiral compound characterized by the attachment of a nitrophenyl group to a hydroxyl group. It is recognized for its potential in the synthesis of pharmaceuticals, agrochemicals, and fine chemicals, serving as a building block for the preparation of biologically active molecules. Its chiral nature and the reactivity of the nitro group enhance its utility in organic synthesis for creating carbon-carbon or carbon-heteroatom bonds and in the production of enantiomerically pure compounds, which are crucial for various applications in different industries.

76116-24-0

Post Buying Request

76116-24-0 Suppliers

Recommended suppliersmore

  • Product
  • FOB Price
  • Min.Order
  • Supply Ability
  • Supplier
  • Contact Supplier

76116-24-0 Usage

Uses

Used in Pharmaceutical Industry:
(R)-(1-(3-nitrophenyl))ethanol is used as a key intermediate in the synthesis of pharmaceuticals for its ability to contribute to the development of biologically active molecules. Its chiral properties ensure the production of enantiomerically pure compounds, which are essential for the efficacy and safety of drugs.
Used in Agrochemical Industry:
In the agrochemical sector, (R)-(1-(3-nitrophenyl))ethanol is utilized as a precursor in the synthesis of agrochemicals, leveraging its reactivity and chirality to create effective and targeted pest control agents.
Used in Fine Chemicals Industry:
(R)-(1-(3-nitrophenyl))ethanol is employed as a building block in the preparation of fine chemicals, where its unique structural features and reactivity are harnessed to produce high-quality specialty chemicals for various applications.
Used as a Chiral Resolving Agent in Chromatographic Separations:
(R)-(1-(3-nitrophenyl))ethanol is used as a chiral resolving agent in chromatographic techniques to separate enantiomers, which is vital for the purity and specificity required in various chemical and pharmaceutical processes.
Used in Organic Synthesis for Bond Formation:
(R)-(1-(3-nitrophenyl))ethanol is utilized in organic synthesis for the formation of carbon-carbon or carbon-heteroatom bonds due to the reactivity of its nitro group, which is beneficial in creating complex molecular structures for a range of applications.

Check Digit Verification of cas no

The CAS Registry Mumber 76116-24-0 includes 8 digits separated into 3 groups by hyphens. The first part of the number,starting from the left, has 5 digits, 7,6,1,1 and 6 respectively; the second part has 2 digits, 2 and 4 respectively.
Calculate Digit Verification of CAS Registry Number 76116-24:
(7*7)+(6*6)+(5*1)+(4*1)+(3*6)+(2*2)+(1*4)=120
120 % 10 = 0
So 76116-24-0 is a valid CAS Registry Number.

76116-24-0SDS

SAFETY DATA SHEETS

According to Globally Harmonized System of Classification and Labelling of Chemicals (GHS) - Sixth revised edition

Version: 1.0

Creation Date: Aug 18, 2017

Revision Date: Aug 18, 2017

1.Identification

1.1 GHS Product identifier

Product name (R)-1-(3-nitrophenyl)ethanol

1.2 Other means of identification

Product number -
Other names (R)-(+)-1-(3-nitrophenyl)ethanol

1.3 Recommended use of the chemical and restrictions on use

Identified uses For industry use only.
Uses advised against no data available

1.4 Supplier's details

1.5 Emergency phone number

Emergency phone number -
Service hours Monday to Friday, 9am-5pm (Standard time zone: UTC/GMT +8 hours).

More Details:76116-24-0 SDS

76116-24-0Relevant articles and documents

Mechanochemical, Water-Assisted Asymmetric Transfer Hydrogenation of Ketones Using Ruthenium Catalyst

Kolcsár, Vanessza Judit,Sz?ll?si, Gy?rgy

, (2022/01/04)

Asymmetric catalytic reactions are among the most convenient and environmentally benign methods to obtain optically pure compounds. The aim of this study was to develop a green system for the asymmetric transfer hydrogenation of ketones, applying chiral Ru catalyst in aqueous media and mechanochemical energy transmission. Using a ball mill we have optimized the milling parameters in the transfer hydrogenation of acetophenone followed by reduction of various substituted derivatives. The scope of the method was extended to carbo- and heterocyclic ketones. The scale-up of the developed system was successful, the optically enriched alcohols could be obtained in high yields. The developed mechanochemical system provides TOFs up to 168 h?1. Our present study is the first in which mechanochemically activated enantioselective transfer hydrogenations were carried out, thus, may be a useful guide for the practical synthesis of optically pure chiral secondary alcohols.

Arene-Immobilized Ru(II)/TsDPEN Complexes: Synthesis and Applications to the Asymmetric Transfer Hydrogenation of Ketones

Doherty, Simon,Knight, Julian G.,Alshaikh, Hind,Wilson, James,Waddell, Paul G.,Wills, Corinne,Dixon, Casey M.

supporting information, p. 226 - 235 (2020/12/31)

The Noyori-Ikariya (arene)Ru(II)/TsDPEN precatalyst has been anchored to amorphous silica and DAVISIL through the η6-coordinated arene ligand via a straightforward synthesis and the derived systems, (arene)Ru(II)/TsDPEN@silica and (arene)Ru(II)/TsDPEN@DAVISIL, form highly efficient catalysts for the asymmetric transfer hydrogenation of a range of electron-rich and electron-poor aromatic ketones, giving good conversion and excellent ee's under mild reaction conditions. Moreover, catalyst generated in situ immediately prior to addition of substrate and hydrogen donor, by reaction of silica-supported [(arene)RuCl2]2 with (S,S)-TsDPEN, was as efficient as that generated from its preformed counterpart [(arene)Ru{(S,S)-TsDPEN}Cl]@silica. Gratifyingly, the initial TOFs (up to 1085 h?1) and ee's (96–97 %) obtained with these catalysts either rivalled or outperformed those previously reported for catalysts supported by either silica or polymer immobilized through one of the nitrogen atoms of TsDPEN. While the high ee's were also maintained during recycle studies, the conversion dropped steadily over the first three runs due to gradual leaching of the ruthenium.

Asymmetric reduction of prochiral aromatic and hetero aromatic ketones using whole-cell of Lactobacillus senmaizukei biocatalyst

?olak, Nida Sezin,Kalay, Erbay,?ahin, Engin

, p. 2305 - 2315 (2021/05/31)

Asymmetric bioreduction of aromatic and heteroaromatic ketones is an important process in the production of precursors of biologically active molecules. In this study, the bioreduction of aromatic and hetero aromatic prochiral ketones into optically active alcohols was investigated using Lactobacillus senmaizukei as a whole-cell catalyst, since whole-cells are less expensive than pure enzymes. The study indicates enantioselective bioreduction of various substituted aromatic ketones (1–16) to the corresponding (R)-and (S)-chiral secondary alcohols (1a–16a) in low to excellent enantioselectivity (6–94%) with good yields (58–95%). In addition, heteroaromatic prochiral ketones 1-(pyridin-2-yl)ethanone (17) and 1-(furan-2-yl)ethanone (18) were reduced to (R)-17a and (R)-18a in enantiopure form with excellent conversion (>99%) and yields. These findings show that L. senmaizukei is a very important biocatalyst for asymmetric reduction of both 6-membered and 5-member heteroaromatic methyl ketones. This method promising a green synthesis for the synthesis of biologically important secondary chiral alcohols in an environmentally friendly and inexpensive process.

UREA, AMIDE, AND SUBSTITUTED HETEROARYL COMPOUNDS FOR CBL-B INHIBITION

-

Paragraph 0371, (2021/02/05)

Compounds of formulae (I) and (II), compositions, and methods for use in inhibiting the E3 enzyme Cbl-b in the ubiquitin proteasome pathway are disclosed. The compounds, compositions, and methods can be used to modulate the immune system, to treat diseases amenable to immune system modulation, and for treatment of cells invivo, in vitro, or ex vivo.

Boron containing chiral Schiff bases: Synthesis and catalytic activity in asymmetric transfer hydrogenation (ATH) of ketones

Pa?a, Salih,Arslan, Nevin,Meri??, Nermin,Kayan, Cezmi,Bingül, Murat,Durap, Feyyaz,Aydemir, Murat

, (2019/09/19)

Asymmetric Transfer Hydrogenation (ATH) has been an attractive way for the reduction of ketones to chiral alcohols. A great number of novel and valuable synthetic pathways have been achived by the combination usage of organometallic and coordination chemistry for the production of important class of compounds and particularly optically active molecules. For this aim, four boron containing Schiff bases were synthesized by the reaction of 4-formylphenylboronic acid with chiral amines. The boron containing structures have been found as stable compounds due to the presence of covalent B–O bonds and thus could be handled in laboratory environment. They were characterized by 1H NMR and FT-IR spectroscopy and elemental analysis and they were used as catalyst in the transfer hydrogenation of ketones to the related alcohol derivatives with high conversions (up to 99%) and low enantioselectivities (up to 22% ee).

Asymmetric Hydrogenation of Ketones and Enones with Chiral Lewis Base Derived Frustrated Lewis Pairs

Du, Haifeng,Feng, Xiangqing,Gao, Bochao,Meng, Wei

supporting information, p. 4498 - 4504 (2020/02/05)

The concept of frustrated Lewis pairs (FLPs) has been widely applied in various research areas, and metal-free hydrogenation undoubtedly belongs to the most significant and successful ones. In the past decade, great efforts have been devoted to the synthesis of chiral boron Lewis acids. In a sharp contrast, chiral Lewis base derived FLPs have rarely been disclosed for the asymmetric hydrogenation. In this work, a novel type of chiral FLP was developed by simple combination of chiral oxazoline Lewis bases with achiral boron Lewis acids, thus providing a promising new direction for the development of chiral FLPs in the future. These chiral FLPs proved to be highly effective for the asymmetric hydrogenation of ketones, enones, and chromones, giving the corresponding products in high yields with up to 95 % ee. Mechanistic studies suggest that the hydrogen transfer to simple ketones likely proceeds in a concerted manner.

Optimisation, scope and advantages of the synthesis of chiral phenylethanols using whole seeds of Bauhinia variegata L. (Fabaceae) as a new and stereoselective bio-reducer of carbonyl compounds

Aimar, Mario L.,Bordón, Daniela L.,Cantero, Juan J.,Decarlini, María F.,Demmel, Gabriela I.,Rossi, Laura I.,Ruiz, Gustavo M.,Vázquez, Ana M.

, p. 1 - 15 (2020/07/14)

With the aim of finding new methods for environmentally friendly synthesis of chiral phenylethanols, a screening was carried out to identify seeds that could be used as a biocatalyst capable of reducing stereoselectively prochiral ketones. As a result, seeds of Bauhinia variegata L. (Fabaceae) were identified as being an efficient and stereoselective biological reducer of acetophenone to produce (S)-1-phenylethanol (conversion of 98% and 99 e.e.%). Then, to optimise the reductive process, the effects of some variables such as temperature, load of substrate, pH, co-solvent, and reuse and storability of the seeds as a function of time were established. Utilising the optimal reaction conditions, nineteen substituted acetophenones were reduced to their corresponding chiral alcohols with a conversion ranging from 30% to 98% and enantiomeric excess of between 65% and >99%, and in addition, useful key intermediates were also obtained by the synthesis of drugs. The scope and advantages of this new biocatalytic synthetic method are also discussed.Research highlights A screening was carried out to identify seeds that could be used as a biocatalyst Seeds of Bauhinia variegata have been identified as an efficient biocatalyst to reduce carbonyl compounds. Acetophenone and substituted acetophenones were reduced with high stereoselectivity. Some key intermediates were synthetised using this methodology. Seeds can be stored for twenty-four months without loss of activity.

One-pot kinetic resolution-Mitsunobu reaction to access optically pure compounds, using silver salts in the substitution protocol

Raval, Hiten B.,Bedekar, Ashutosh V.

, p. 21238 - 21243 (2020/12/31)

A practical method is developed to access chiral arylalkyl carbinols with a high yield from racemic alcohols. A one-pot enzyme mediated Kinetic Resolution followed by Mitsunobu esterification of the unreacted enantiomer of alcohol with metal acetate results in a nearly complete formation of chiral acetate. Substitution with AgOAc was found to be the most efficient, and the use of sub stoichiometric amounts of AgNO3 and excess of NaOAc affords comparable results; the protocol was further extended to introduce azide as a nucleophile.

Efficient asymmetric synthesis of chiral alcohols using high 2-propanol tolerance alcohol dehydrogenase: Sm ADH2 via an environmentally friendly TBCR system

Yang, Zeyu,Fu, Hengwei,Ye, Wenjie,Xie, Youyu,Liu, Qinghai,Wang, Hualei,Wei, Dongzhi

, p. 70 - 78 (2020/01/21)

Alcohol dehydrogenases (ADHs) together with the economical substrate-coupled cofactor regeneration system play a pivotal role in the asymmetric synthesis of chiral alcohols; however, severe challenges concerning the poor tolerance of enzymes to 2-propanol and the adverse effects of the by-product, acetone, limit its applications, causing this strategy to lapse. Herein, a novel ADH gene smadh2 was identified from Stenotrophomonas maltophilia by traditional genome mining technology. The gene was cloned into Escherichia coli cells and then expressed to yield SmADH2. SmADH2 has a broad substrate spectrum and exhibits excellent tolerance and superb activity to 2-propanol even at 10.5 M (80%, v/v) concentration. Moreover, a new thermostatic bubble column reactor (TBCR) system is successfully designed to alleviate the inhibition of the by-product acetone by gas flow and continuously supplement 2-propanol. The organic waste can be simultaneously recovered for the purpose of green synthesis. In the sustainable system, structurally diverse chiral alcohols are synthesised at a high substrate loading (>150 g L-1) without adding external coenzymes. Among these, about 780 g L-1 (6 M) ethyl acetoacetate is completely converted into ethyl (R)-3-hydroxybutyrate in only 2.5 h with 99.9% ee and 7488 g L-1 d-1 space-time yield. Molecular dynamics simulation results shed light on the high catalytic activity toward the substrate. Therefore, the high 2-propanol tolerance SmADH2 with the TBCR system proves to be a potent biocatalytic strategy for the synthesis of chiral alcohols on an industrial scale.

Highly Enantioselective Transfer Hydrogenation of Prochiral Ketones Using Ru(II)-Chitosan Catalyst in Aqueous Media

Sz?ll?si, Gy?rgy,Kolcsár, Vanessza Judit

, p. 820 - 830 (2018/12/13)

Unprecedentedly high enantioselectivities are obtained in the transfer hydrogenation of prochiral ketones catalyzed by a Ru complex formed in situ with chitosan chiral ligand. This biocompatible, biodegradable chiral polymer obtained from the natural chitin afforded good, up to 86 % enantioselectivities, in the aqueous-phase transfer hydrogenation of acetophenone derivatives using HCOONa as hydrogen donor. Cyclic ketones were transformed in even higher, over 90 %, enantioselectivities, whereas further increase, up to 97 %, was obtained in the transfer hydrogenations of heterocyclic ketones. The chiral catalyst precursor prepared ex situ was examined by scanning electron microscopy, FT-mid- and -far-IR spectroscopy. The structure of the in situ formed catalyst was investigated by 1H NMR spectroscopy and using various chitosan derivatives. It was shown that a Ru pre-catalyst is formed by coordination of the biopolymer to the metal by amino groups. This precursor is transformed in water insoluble Ru-hydride complex following hydrogen donor addition. The practical value of the developed method was verified by preparing over twenty chiral alcohols in good yields and optical purities. The catalyst was applied for obtaining optically pure chiral alcohols at gram scale following a single crystallization.

Post a RFQ

Enter 15 to 2000 letters.Word count: 0 letters

Attach files(File Format: Jpeg, Jpg, Gif, Png, PDF, PPT, Zip, Rar,Word or Excel Maximum File Size: 3MB)

1

What can I do for you?
Get Best Price

Get Best Price for 76116-24-0