Welcome to LookChem.com Sign In|Join Free

CAS

  • or

76466-16-5

Post Buying Request

76466-16-5 Suppliers

Recommended suppliersmore

  • Product
  • FOB Price
  • Min.Order
  • Supply Ability
  • Supplier
  • Contact Supplier

76466-16-5 Usage

General Description

(+/-)-2-(2-chlorophenoxy)propionic acid is a chemical compound that belongs to the family of propionic acids. It is a racemic mixture, meaning that it consists of equal amounts of both the (+) and (-) enantiomers. (+/-)-2-(2-chlorophenoxy)propionic acid is commonly used as a herbicide in agriculture to control the growth of weeds and unwanted vegetation. It works by inhibiting the synthesis of specific plant hormones, which ultimately disrupts the growth of the plants and leads to their death. Additionally, it is also used in research and laboratory settings as a starting material for the synthesis of other organic compounds. Overall, (+/-)-2-(2-chlorophenoxy)propionic acid plays an important role in both agricultural and scientific applications.

Check Digit Verification of cas no

The CAS Registry Mumber 76466-16-5 includes 8 digits separated into 3 groups by hyphens. The first part of the number,starting from the left, has 5 digits, 7,6,4,6 and 6 respectively; the second part has 2 digits, 1 and 6 respectively.
Calculate Digit Verification of CAS Registry Number 76466-16:
(7*7)+(6*6)+(5*4)+(4*6)+(3*6)+(2*1)+(1*6)=155
155 % 10 = 5
So 76466-16-5 is a valid CAS Registry Number.

76466-16-5SDS

SAFETY DATA SHEETS

According to Globally Harmonized System of Classification and Labelling of Chemicals (GHS) - Sixth revised edition

Version: 1.0

Creation Date: Aug 19, 2017

Revision Date: Aug 19, 2017

1.Identification

1.1 GHS Product identifier

Product name (2RS)-2-(2-chlorophenoxy)propionic acid

1.2 Other means of identification

Product number -
Other names (+/-)-2-(2-chlorophenoxy)propanoic acid

1.3 Recommended use of the chemical and restrictions on use

Identified uses For industry use only.
Uses advised against no data available

1.4 Supplier's details

1.5 Emergency phone number

Emergency phone number -
Service hours Monday to Friday, 9am-5pm (Standard time zone: UTC/GMT +8 hours).

More Details:76466-16-5 SDS

76466-16-5Relevant articles and documents

Access to Optically Enriched α-Aryloxycarboxylic Esters via Carbene-Catalyzed Dynamic Kinetic Resolution and Transesterification

Liu, Bin,Song, Runjiang,Xu, Jun,Majhi, Pankaj Kumar,Yang, Xing,Yang, Song,Jin, Zhichao,Chi, Yonggui Robin

supporting information, p. 3335 - 3338 (2020/04/30)

Optically active α-aryloxycarboxylic acids and their derivatives are important functional molecules. Disclosed here is a carbene-catalyzed dynamic kinetic resolution and transesterification reaction for access to this class of molecules with up to 99% yields and 99:1 er values. Addition of a chiral carbene catalyst to the ester substrate leads to two diastereomeric azolium ester intermediates that can quickly epimerize to each other and thus allows for effective dynamic kinetic resolution to be realized. The optically enriched ester products from our reaction can be quickly transformed to chiral herbicides and other bioactive molecules.

(R,S)-2-chlorophenoxyl pyrazolides as novel substrates for improving lipase-catalyzed hydrolytic resolution

Kao, Min-Fang,Lu, Pei-Yu,Kao, Jou-Yan,Wang, Pei-Yun,Wu, An-Chi,Tsai, Shau-Wei

experimental part, p. 60 - 66 (2012/05/04)

The best reaction condition of Candida antartica lipase B as biocatalyst, 3-(2-pyridyl)pyrazole as leaving azole, and water-saturated methyl t-butyl ether as reaction medium at 45°C were first selected for performing the hydrolytic resolution of (R,S)-2-(4-chlorophenoxyl) azolides (1-4). In comparison with the kinetic resolution of (R,S)-2-phenylpropionyl 3-(2-pyridyl)pyrazolide or (R,S)-α-methoxyphenylacetyl 3-(2-pyridyl)pyrazolide at the same reaction condition, excellent enantioselectivity with more than two order-of-magnitudes higher activity for each enantiomer was obtained. The resolution was then extended to other (R,S)-3-(2-pyridyl)pyrazolides (5-7) containing 2-chloro, 3-chloro, or 2,4-dichloro substituent, giving good (E > 48) to excellent (E > 100) enantioselectivity. The thermodynamic analysis for 1, 2, and 4-7 demonstrates profound effects of the acyl or leaving moiety on varying enthalpic and entropic contributions to the difference of Gibbs free energies. A thorough kinetic analysis further indicates that on the basis of 6, the excellent enantiomeric ratio for 4 and 7 is due to the higher reactivity of (S)-4 and lower reactivity of (R)-7, respectively.

Chlorination of 2-phenoxypropanoic acid with NCP in aqueous acetic acid: Using a novel ortho-para relationship and the para/meta ratio of substituent effects for mechanism elucidation

Segurado, Manuel A. P.,Reis, Joao Carlos R.,De Oliveira, Jaime D. Gomes,Kabilan, Senthamaraikannan,Shanthi, Manohar

, p. 5327 - 5336 (2008/02/07)

(Graph Presented) Rate constants were measured for the oxidative chlorodehydrogenation of (R,S)-2-phenoxypropanoic acid and nine ortho-, ten para- and five meta-substituted derivatives using (R,S)-1-chloro-3-methyl-2,6- diphenylpiperidin-4-one (NCP) as chlorinating agent. The kinetics was run in 50% (v/v) aqueous acetic acid acidified with perchloric acid under pseudo-first-order conditions with respect to NCP at temperature intervals of 5 K between 298 and 318 K, except at the highest temperature for the meta derivatives. The dependence of rate constants on temperature was analyzed in terms of the isokinetic relationship (IKR). For the 20 reactions studied at five different temperatures, tne isokinetic temperature was estimated to be 382 K, which suggests the preferential involvement of water molecules in the rate-determining step. The dependence of rate constants on meta and para substitution was analyzed using the tetralinear extension of the Hammett equation. The parameter λ for the para/meta ratio of polar substituent effects was estimated to be 0.926, and its electrostatic modeling suggests the formation of an activated complex bearing an electric charge near the oxygen atom belonging to the phenoxy group. A new approach is introduced for examining the effect of ortho substituents on reaction rates. Using IKR-determined values of activation enthalpies for a set of nine pairs of substrates with a given substituent, a linear correlation is found between activation enthalpies of ortho and para derivatives. The correlation is interpreted in terms of the selectivity of the reactant toward para- or ortho-monosubstituted substrates, the slope of which being related to the ortho effect. This slope is thought to be approximated by the ratio of polar substituent effects from ortho and para positions in benzene derivatives. Using the electrostatic theory of through-space interactions and a dipole length of 0.153 nm, this ratio was calculated at various positions of a charged reaction center along the benzene C1-C4 axis, being about 2.5 near the ring and decreasing steeply with increasing distance until reaching a minimum value of -0.565 at 1.3 nm beyond the aromatic ring. Activation enthalpies and entropies were estimated for substrates bearing the isoselective substituent in either ortho and para positions, being demonstrated that they are much different from the values for the parent substrate. The electrophilic attack on the phenolic oxygen atom by the protonated chlorinating agent is proposed as the rate-determining step, this step being followed by the fast rearrangement of the intermediate thus formed, leading to products containing chlorine in the aromatic ring.

Post a RFQ

Enter 15 to 2000 letters.Word count: 0 letters

Attach files(File Format: Jpeg, Jpg, Gif, Png, PDF, PPT, Zip, Rar,Word or Excel Maximum File Size: 3MB)

1

What can I do for you?
Get Best Price

Get Best Price for 76466-16-5