Welcome to LookChem.com Sign In|Join Free

CAS

  • or

877-99-6

Post Buying Request

877-99-6 Suppliers

Recommended suppliersmore

  • Product
  • FOB Price
  • Min.Order
  • Supply Ability
  • Supplier
  • Contact Supplier

877-99-6 Usage

Check Digit Verification of cas no

The CAS Registry Mumber 877-99-6 includes 6 digits separated into 3 groups by hyphens. The first part of the number,starting from the left, has 3 digits, 8,7 and 7 respectively; the second part has 2 digits, 9 and 9 respectively.
Calculate Digit Verification of CAS Registry Number 877-99:
(5*8)+(4*7)+(3*7)+(2*9)+(1*9)=116
116 % 10 = 6
So 877-99-6 is a valid CAS Registry Number.

877-99-6SDS

SAFETY DATA SHEETS

According to Globally Harmonized System of Classification and Labelling of Chemicals (GHS) - Sixth revised edition

Version: 1.0

Creation Date: Aug 18, 2017

Revision Date: Aug 18, 2017

1.Identification

1.1 GHS Product identifier

Product name 1-methoxy-4-(2-methylprop-1-enyl)benzene

1.2 Other means of identification

Product number -
Other names -

1.3 Recommended use of the chemical and restrictions on use

Identified uses For industry use only.
Uses advised against no data available

1.4 Supplier's details

1.5 Emergency phone number

Emergency phone number -
Service hours Monday to Friday, 9am-5pm (Standard time zone: UTC/GMT +8 hours).

More Details:877-99-6 SDS

877-99-6Relevant articles and documents

Electrochemical Aziridination of Internal Alkenes with Primary Amines

Bartolomeu, Aloisio de A.,Dyga, Marco,Goo?en, Lukas J.,Laudadio, Gabriele,No?l, Timothy,O?eka, Maksim,de Bruin, Bas,de Oliveira, Kleber T.,van Leest, Nicolaas P.

supporting information, p. 255 - 266 (2021/01/19)

An electrochemical approach to prepare aziridines via an oxidative coupling between alkenes and primary alkyl amines was realized. The reaction is carried out in an electrochemical flow reactor, leading to short reaction/residence times (5 min), high yields, and broad scope. At the cathode, hydrogen is generated, which can be used in a second reactor to reduce the aziridine yielding the corresponding hydroaminated product.Aziridines are useful synthetic building blocks, widely employed for the preparation of various nitrogen-containing derivatives. As the current methods require the use of prefunctionalized amines, the development of a synthetic strategy toward aziridines that can establish the union of alkenes and amines would be of great synthetic value. Herein, we report an electrochemical approach, which realizes this concept via an oxidative coupling between alkenes and primary alkylamines. The reaction is carried out in an electrochemical flow reactor leading to short reaction/residence times (5 min), high yields, and broad scope. At the cathode, hydrogen is generated, which can be used in a second reactor to reduce the aziridine, yielding the corresponding hydroaminated product. Mechanistic investigations and DFT calculations revealed that the alkene is first anodically oxidized and subsequently reacted with the amine coupling partner.The central tenet in modern synthetic methodology is to develop new methods only using widely available organic building blocks. As a direct consequence, new activation strategies are required to cajole the coupling partners to react and, subsequently, forge new and useful chemical bonds. Using electrochemical activation, our methodology enables for the first time the direct coupling between olefins and amines to yield aziridines. Aziridines display interesting pharmacological activity and serve as valuable synthetic intermediates to prepare diverse nitrogen-containing derivatives. Interestingly, the sole byproduct generated in this process is hydrogen, which can be subsequently used to reduce the aziridine into the corresponding hydroaminated product. Hence, this electrochemical methodology can be regarded as green and sustainable from the vantage point of upgrading simple and widely available commodity chemicals.

Catalytic Intermolecular C(sp3)-H Amination: Selective Functionalization of Tertiary C-H Bonds vs Activated Benzylic C-H Bonds

Brunard, Erwan,Boquet, Vincent,Van Elslande, Elsa,Saget, Tanguy,Dauban, Philippe

supporting information, p. 6407 - 6412 (2021/05/29)

A catalytic intermolecular amination of nonactivated tertiary C(sp3)-H bonds (BDE of 96 kcal·mol-1) is reported for substrates displaying an activated benzylic site (BDE of 85 kcal·mol-1). The tertiary C(sp3)-H bond is selectively functionalized to afford α,α,α-Trisubstituted amides in high yields. This unusual site-selectivity results from the synergistic combination of Rh2(S-Tfpttl)4, a rhodium(II) complex with a well-defined catalytic pocket, with tert-butylphenol sulfamate (TBPhsNH2), which leads to a discriminating rhodium-bound nitrene species under mild oxidative conditions. This catalytic system is very robust, and the reaction was performed on a 50 mmol scale with only 0.01 mol % of catalyst. The TBPhs group can be removed under mild conditions to afford the corresponding NH-free amines.

Iron-Catalyzed Tunable and Site-Selective Olefin Transposition

Yu, Xiaolong,Zhao, Haonan,Li, Ping,Koh, Ming Joo

supporting information, p. 18223 - 18230 (2020/12/04)

The catalytic isomerization of C-C double bonds is an indispensable chemical transformation used to deliver higher-value analogues and has important utility in the chemical industry. Notwithstanding the advances reported in this field, there is compelling demand for a general catalytic solution that enables precise control of the C═C bond migration position, in both cyclic and acyclic systems, to furnish disubstituted and trisubstituted alkenes. Here, we show that catalytic amounts of an appropriate earth-abundant iron-based complex, a base and a boryl compound, promote efficient and controllable alkene transposition. Mechanistic investigations reveal that these processes likely involve in situ formation of an iron-hydride species which promotes olefin isomerization through sequential olefin insertion/β-hydride elimination. Through this strategy, regiodivergent access to different products from one substrate can be facilitated, isomeric olefin mixtures commonly found in petroleum-derived feedstock can be transformed to a single alkene product, and unsaturated moieties embedded within linear and heterocyclic biologically active entities can be obtained.

Post a RFQ

Enter 15 to 2000 letters.Word count: 0 letters

Attach files(File Format: Jpeg, Jpg, Gif, Png, PDF, PPT, Zip, Rar,Word or Excel Maximum File Size: 3MB)

1

What can I do for you?
Get Best Price

Get Best Price for 877-99-6