Welcome to LookChem.com Sign In|Join Free

CAS

  • or

95092-10-7

Post Buying Request

95092-10-7 Suppliers

Recommended suppliersmore

  • Product
  • FOB Price
  • Min.Order
  • Supply Ability
  • Supplier
  • Contact Supplier

95092-10-7 Usage

General Description

N-Methoxy-N-Methyl-2-phenylacetamide is a chemical compound that is commonly used as a pharmaceutical intermediate in the synthesis of various drugs. It is a white to off-white crystalline powder that is soluble in organic solvents such as ethanol and acetone. N-Methoxy-N-Methyl-2-phenylacetaMide is widely used in the pharmaceutical industry for its analgesic and antipyretic properties. It is also used as a precursor in the synthesis of other pharmaceutical compounds. However, it is important to handle this chemical with care as it can be hazardous if not properly managed.

Check Digit Verification of cas no

The CAS Registry Mumber 95092-10-7 includes 8 digits separated into 3 groups by hyphens. The first part of the number,starting from the left, has 5 digits, 9,5,0,9 and 2 respectively; the second part has 2 digits, 1 and 0 respectively.
Calculate Digit Verification of CAS Registry Number 95092-10:
(7*9)+(6*5)+(5*0)+(4*9)+(3*2)+(2*1)+(1*0)=137
137 % 10 = 7
So 95092-10-7 is a valid CAS Registry Number.

95092-10-7SDS

SAFETY DATA SHEETS

According to Globally Harmonized System of Classification and Labelling of Chemicals (GHS) - Sixth revised edition

Version: 1.0

Creation Date: Aug 18, 2017

Revision Date: Aug 18, 2017

1.Identification

1.1 GHS Product identifier

Product name N-methoxy-N-methyl-2-phenylacetamide

1.2 Other means of identification

Product number -
Other names Benzeneacetamide,N-methoxy-N-methyl

1.3 Recommended use of the chemical and restrictions on use

Identified uses For industry use only.
Uses advised against no data available

1.4 Supplier's details

1.5 Emergency phone number

Emergency phone number -
Service hours Monday to Friday, 9am-5pm (Standard time zone: UTC/GMT +8 hours).

More Details:95092-10-7 SDS

95092-10-7Relevant articles and documents

Assemblies of 1,4-Bis(diarylamino)naphthalenes and Aromatic Amphiphiles: Highly Reducing Photoredox Catalysis in Water

Abe, Manabu,Akita, Munetaka,Chitose, Youhei,Hyodo, Yuki,Koike, Takashi,Takahashi, Keigo,Yoshizawa, Michito

supporting information, (2021/10/21)

Host-guest assemblies of a designed 1,4-bis(diarylamino)naphthalene and V-shaped aromatic amphiphiles consisting of two pentamethylbenzene moieties bridged by an m -phenylene unit bearing two hydrophilic side chains emerged as highly reducing photoredox catalysis systems in water. An efficient demethoxylative hydrogen transfer of Weinreb amides has been developed. The present supramolecular strategy permits facile tuning of visible-light photoredox catalysis in water.

Catalytic α-Deracemization of Ketones Enabled by Photoredox Deprotonation and Enantioselective Protonation

Chen, Shuming,Gao, Anthony Z.,Ivlev, Sergei I.,Meggers, Eric,Nie, Xin,Ye, Chen-Xi,Zhang, Chenhao

supporting information, p. 13393 - 13400 (2021/09/03)

This study reports the catalytic deracemization of ketones bearing stereocenters in the α-position in a single reaction via deprotonation, followed by enantioselective protonation. The principle of microscopic reversibility, which has previously rendered this strategy elusive, is overcome by a photoredox deprotonation through single electron transfer and subsequent hydrogen atom transfer (HAT). Specifically, the irradiation of racemic pyridylketones in the presence of a single photocatalyst and a tertiary amine provides nonracemic carbonyl compounds with up to 97% enantiomeric excess. The photocatalyst harvests the visible light, induces the redox process, and is responsible for the asymmetric induction, while the amine serves as a single electron donor, HAT reagent, and proton source. This conceptually simple light-driven strategy of coupling a photoredox deprotonation with a stereocontrolled protonation, in conjunction with an enrichment process, serves as a blueprint for other deracemizations of ubiquitous carbonyl compounds.

Iron-Catalyzed Enantioselective Radical Carboazidation and Diazidation of α,β-Unsaturated Carbonyl Compounds

Dong, Shunxi,Feng, Xiaoming,He, Jun,Liu, Wen,Liu, Xiaohua,Pu, Maoping,Wu, Yun-Dong,Zhang, Tinghui

supporting information, p. 11856 - 11863 (2021/08/16)

Azidation of alkenes is an efficient protocol to synthesize organic azides which are important structural motifs in organic synthesis. Enantioselective radical azidation, as a useful strategy to install a C-N3 bond, remains challenging due to the inherently instability and unique structure of radicals. Here, we disclose an efficient enantioselective radical carboazidation and diazidation of α,β-unsaturated ketones and amides catalyzed by chiral N,N′-dioxide/Fe(OTf)2 complexes. An array of substituted alkenes was transformed to the corresponding α-azido carbonyl derivatives in good to excellent enantioselectivities, benefiting the preparation of chiral α-amino ketones, vicinal amino alcohols, and vicinal diamines. Control experiments and mechanistic studies proved the radical pathway in the reaction process. The DFT calculations showed that the azido transferred to the radical intermediate via an intramolecular five-membered transition state with the internal nitrogen of the Fe-N3 species.

Post a RFQ

Enter 15 to 2000 letters.Word count: 0 letters

Attach files(File Format: Jpeg, Jpg, Gif, Png, PDF, PPT, Zip, Rar,Word or Excel Maximum File Size: 3MB)

1

What can I do for you?
Get Best Price

Get Best Price for 95092-10-7