960-16-7Relevant articles and documents
Calcium stannyl formation by organostannane dehydrogenation
Morris, Louis J.,Hill, Michael S.,Manners, Ian,Mcmullin, Claire L.,Mahon, Mary F.,Rajabi, Nasir A.
supporting information, p. 12964 - 12967 (2019/11/05)
Reaction of the dimeric calcium hydride, [(BDI)CaH]2 (1), with Ph3SnH ensues with elimination of H2 to provide [(BDI)Ca-μ2-H-(SnPh3)Ca(BDI)] (3) and [(BDI)Ca(SnPh3)]2 (4) alongside dismutation to Ph4Sn, H2 and Sn(0). DFT analysis indicates that stannyl anion formation occurs through deprotonation of Ph3SnH and with retention of dinuclear species throughout the reactions.
Copper-catalyzed arylstannylation of arynes in a sequence
Tanaka, Hideya,Kuriki, Hitoshi,Kubo, Teruhiko,Osaka, Itaru,Yoshida, Hiroto
supporting information, p. 6503 - 6506 (2019/06/13)
Copper-catalyzed arylstannylation of arynes has been developed. This transformation enables variously substituted ortho-stannylbiaryls and teraryls to be constructed straightforwardly. An electron-deficient tin center is the key, and thus the single or dual insertion of arynes into arylstannanes is precisely controllable by simply changing the equivalence of aryne precursors.
Nickel-catalyzed decarbonylative stannylation of acyl fluorides under ligand-free conditions
Wang, Xiu,Wang, Zhenhua,Liu, Li,Asanuma, Yuya,Nishihara, Yasushi
, (2019/05/24)
Nickel-catalyzed decarbonylative stannylation of acyl fluorides under ligand-free conditions was disclosed. A variety of aromatic acyl fluorides are capable of reacting with silylstannanes in the presence of cesium fluoride. A one-pot decarbonylative stannylation/Migita-Kosugi-Stille reaction of benzoyl fluoride, giving rise to the direct formation of the corresponding cross-coupled products, further demonstrated the synthetic utility of the present method. This newly developed methodology with a good functional-group compatibility via C-F bond cleavage and C-Sn bond formation under nickel catalysis opens a new area for the functionalization of acyl fluorides in terms of carbon-heteroatom bond formation.
Stannylation of Aryl Halides, Stille Cross-Coupling, and One-Pot, Two-Step Stannylation/Stille Cross-Coupling Reactions under Solvent-Free Conditions
Gribanov, Pavel S.,Golenko, Yulia D.,Topchiy, Maxim A.,Minaeva, Lidiya I.,Asachenko, Andrey F.,Nechaev, Mikhail S.
supporting information, p. 120 - 125 (2018/01/17)
Solvent-free protocols for palladium-catalyzed stannylation of aryl halides, Stille cross-coupling, and one-pot, two-step stannylation/Stille cross-coupling (SSC) are reported for the first time. (Het)aryl halides bearing acceptor, donor, as well as sterically demanding substituents are stannylated and/or coupled in high yields. The reactions are catalyzed by conventional palladium(II) acetate/PCy3 [Pd(OAc)2/PCy3] under air, using available base CsF, and without the use of high purity reagents. The developed synthetic procedures are versatile, robust, and easily scalable. The absence of solvent, and the elimination of isolation procedures of aryl stannanes makes the SSC protocol simple, step economical, and highly efficient for the synthesis of biaryls in a one-pot two-step procedure.
Method for converting substituted sodium aryl sulfonate to aryl tri-n-butyltin
-
Paragraph 0039-0043; 0123-0127; 0129-0133; 0135-0139; 0141, (2018/12/14)
The invention discloses a method for converting substituted sodium acryl sulfonate to aryl tri-n-butyltin. The synthetic method of the aryl tri-n-butyltin compound comprises the following steps: uniformly mixing sodium aryl sulfonate, silver carbonate, bis(tri-tert-butylphosphine)palladium, and hexabutyldistannane in a solvent, reacting for 1 to 8 hours at 80 to 140 DEG C, and after the reaction is ended, concentrating; and performing the column chromatography, and obtaining a pure aryl tri-n-butyltin product. The adopted raw material is sodium aryl sulfonate which is significant in supplementation, wide in source, cheap and easy to obtain compared with the existing method adopting aromatic halides as a raw material. The reaction in the invention has good tolerance and universality for a functional group, and the substituent group can be hydrogen, methyl, tertiary butyl, fluorine, chlorine, bromine, cyanogroup, trifluoromethyl, nitro, acetyl or carbethoxy.
Synthesis of arylstannanes by palladium-catalyzed desulfitative coupling reaction of sodium arylsulfinates with distannanes
Lian, Chang,Yue, Guanglu,Zhang, Haonan,Wei, Liyan,Liu, Danyang,Liu, Sichen,Fang, Huayi,Qiu, Di
supporting information, p. 4019 - 4023 (2018/10/04)
A novel Pd-catalyzed desulfitative cross-coupling reaction of sodium arylsulfinates with hexaalkyl distannanes is realized, allowing the facile synthesis of functionalized arylstannanes with moderate to excellent yields. The successful implement of gram-scale synthesis and tandem Stille coupling reaction demonstrates the potential applications of this method in organic synthesis.
Addition of arylstannanes to alkynes giving: Ortho -alkenylarylstannanes catalysed cooperatively by a rhodium complex and zinc chloride
Ming, Jialin,Shi, Qi,Hayashi, Tamio
, p. 7700 - 7704 (2018/10/24)
The reaction of arylstannanes ArSnR3 with unfunctionalised alkynes was found to proceed in the presence of a rhodium catalyst and a catalytic amount of zinc chloride to give ortho-alkenylarylstannanes with high selectivity in high yields. The c
Catalytic Ester to Stannane Functional Group Interconversion via Decarbonylative Cross-Coupling of Methyl Esters
Yue, Huifeng,Zhu, Chen,Rueping, Magnus
supporting information, p. 385 - 388 (2018/01/27)
An unprecedented conversion of methyl esters to stannanes was realized, providing access to a series of arylstannanes via nickel catalysis. Various common esters including ethyl, cyclohexyl, benzyl, and phenyl esters can undergo the newly developed decarbonylative stannylation reaction. The reaction shows broad substrate scope, can differentiate between different types of esters, and if applied in consecutive fashion, allows the transformation of methyl esters into aryl fluorides or biaryls via fluororination or arylation.
Gold(i)-catalyzed cross-coupling reactions of aryldiazonium salts with organostannanes
Akram, Manjur O.,Shinde, Popat S.,Chintawar, Chetan C.,Patil, Nitin T.
supporting information, p. 2865 - 2869 (2018/05/03)
Gold(i)-catalyzed cross-coupling reactions of aryldiazonium salts with organostannanes are described. This redox neutral strategy offers an efficient approach to diverse biaryls, vinyl arenes and arylacetylenes. Monitoring the reaction with NMR and ESI-MS provided strong evidence for the in situ formation of Ph3PAuIR (R = aryl, vinyl and alkynyl) species which is crucial for the activation of aryldiazonium salts.
Controllable Stereoselective Synthesis of (Z)- and (E)-Homoallylic Alcohols Using a Palladium-Catalyzed Three-Component Reaction
Horino, Yoshikazu,Sugata, Miki,Mutsuura, Itaru,Tomohara, Keisuke,Abe, Hitoshi
supporting information, p. 5968 - 5971 (2017/11/10)
Diastereoselective synthesis of (Z)- and (E)-homoallylic alcohols using a Pd-catalyzed three-component reaction of 3-(pinacolatoboryl)allyl benzoates, aldehydes, and aryl stannanes was developed, which provides an alternative method for the allylboration of aldehydes using α, γ-diaryl-substituted allylboronates. Both sets of reaction conditions enable access to either (Z)- or (E)-homoallylic alcohols with good to high alkene stereocontrol. The present method showed good functional group compatibility and generality. Efficient chirality transfer reactions to afford enantioenriched (Z)- and (E)-homoallylic alcohols were also achieved.