4403-69-4Relevant articles and documents
Ruthenium- and osmium-arene complexes of 8-substituted indolo[3,2-c] quinolines: Synthesis, X-ray diffraction structures, spectroscopic properties, and antiproliferative activity
Filak, Lukas K.,G?schl, Simone,Hackl, Stefanie,Jakupec, Michael A.,Arion, Vladimir B.
, p. 252 - 260 (2012)
Six novel ruthenium(II)- and osmium(II)-arene complexes with indoloquinoline modified ligands containing methyl and halo substituents in position 8 of the molecule backbone have been synthesised and comprehensively characterised by spectroscopic methods (1H, 13C NMR, UV-Vis), ESI mass spectrometry and X-ray crystallography. Binding of indoloquinolines to a metal-arene scaffold makes the products soluble enough in biological media to allow for assaying their antiproliferative activity. The complexes were tested in three human cancer cell lines, namely A549 (non-small cell lung cancer), SW480 (colon carcinoma) and CH1 (ovarian carcinoma), yielding IC50 values in the 10-6-10-7 M concentration range after continuous exposure for 96 h. Compounds with halo substituents in position 8 are more effective cytotoxic agents in vitro than the previously reported species halogenated in position 2 of the indoloquinoline backbone. High antiproliferative activity of both series of substances may be due at least in part to their potential to act as DNA intercalators.
Electrophilically activated nitroalkanes in synthesis of 3,4-dihydroquinozalines
Aksenov, Alexander V.,Aksenov, Dmitrii A.,Aksenov, Nicolai A.,Grishin, Igor Yu.,Malyuga, Vladimir V.,Nobi, Mezvah A.,Rubin, Michael
, (2021/08/03)
Nitroalkanes activated with polyphosphoric acid serve as efficient electrophiles in reactions with various nucleophilic amines. Strategically placed second functionality allows for the design of annulation reactions enabling preparation of various heterocycles. This strategy was employed to develop an innovative synthetic approach towards 3,4-dihydroquinazolines from readily available 2-(aminomethyl)anilines.
A State-of-the-Art Heterogeneous Catalyst for Efficient and General Nitrile Hydrogenation
Formenti, Dario,Mocci, Rita,Atia, Hanan,Dastgir, Sarim,Anwar, Muhammad,Bachmann, Stephan,Scalone, Michelangelo,Junge, Kathrin,Beller, Matthias
supporting information, p. 15589 - 15595 (2020/10/02)
Cobalt-doped hybrid materials consisting of metal oxides and carbon derived from chitin were prepared, characterized and tested for industrially relevant nitrile hydrogenations. The optimal catalyst supported onto MgO showed, after pyrolysis at 700 °C, magnesium oxide nanocubes decorated with carbon-enveloped Co nanoparticles. This special structure allows for the selective hydrogenation of diverse and demanding nitriles to the corresponding primary amines under mild conditions (e.g. 70 °C, 20 bar H2). The advantage of this novel catalytic material is showcased for industrially important substrates, including adipodinitrile, picolinonitrile, and fatty acid nitriles. Notably, the developed system outperformed all other tested commercial catalysts, for example, Raney Nickel and even noble-metal-based systems in these transformations.
Cobalt pincer complexes for catalytic reduction of nitriles to primary amines
Schneek?nig, Jacob,Tannert, Bianca,Hornke, Helen,Beller, Matthias,Junge, Kathrin
, p. 1779 - 1783 (2019/04/27)
Various cobalt pincer type complexes 1-6 were applied for the catalytic hydrogenation of nitriles to amines. Among these, catalyst 4 is the most efficient, allowing the reduction of aromatic as well as aliphatic nitriles in moderate to excellent yields.
Preparation of a magnetic mesoporous Fe3O4-Pd@TiO2 photocatalyst for the efficient selective reduction of aromatic cyanides
Zhao, Ziming,Long, Yu,Luo, Sha,Wu, Wei,Ma, Jiantai
, p. 6294 - 6302 (2019/04/25)
Herein, a hierarchical magnetic mesoporous microsphere was successfully prepared as a photocatalyst via a simple and reproducible route. Typically, Pd nanoparticles (NPs) were evenly dispersed on the surface of a magnetic Fe3O4 microsphere and then coated with a porous anatase-TiO2 shell to form Fe3O4-Pd@TiO2. The core-shell structure could efficiently suppress the conglomeration of Pd NPs during the calcination process at high temperatures as well as the shedding of Pd during the catalytic reaction process in the liquid phase. The as-prepared photocatalyst was characterized by TEM, XRD, XPS, VSM, and N2 adsorption-desorption. Fe3O4-Pd@TiO2 exhibits high photocatalytic activity for the selective reduction of aromatic cyanides to aromatic primary amines in an acidic aqueous solution. Moreover, this magnetic photocatalyst could be easily recovered from the reaction mixture by an external magnet and reused five times without significant reduction in its activity. The superior photocatalytic efficiency of the proposed photocatalyst may be attributed to its high charge separation efficiency and charge transfer rate, which are caused by the Schottky junction and large interface area. The results indicate that the strategy of coating the active noble metal sites with a mesoporous semiconductor shell has a significant potential for application in metal-semiconductor-based photocatalytic reactions.
Eco-friendly reactions in PEG-400: A highly efficient and green approach for stereoselective access to multisubstituted 3,4-dihydro-2(1: H)-quinazolines using 2-aminobenzylamines
Sharma, Nutan,Sharma, Pankaj,Bhagat, Sunita
, p. 8721 - 8731 (2018/03/08)
An efficient and stereoselective synthesis of novel 3,4-dihydro-2(1H)-quinazolines has been developed through cyclization reactions of 2-aminobenzylamines with α-oxoketene dithioacetals using PEG-400 as an inexpensive, easy to handle, non-toxic and recycl
Nitrile hydrogenation using nickel nanocatalysts in ionic liquids
Konnerth, Hannelore,Prechtl, Martin H. G.
supporting information, p. 9594 - 9597 (2017/09/18)
Ni nanoparticles (NPs) embedded in imidazolium based ionic liquids (ILs) have been proven to be versatile catalysts for the selective hydrogenation of benzonitrile to benzylamine with good recyclability in a biphasic system. Influence of the used ILs and reaction conditions has been examined in detail and a wider substrate scope has been studied using benzonitrile derivatives and aliphatic nitriles.
Selective Hydrogenation of Nitriles to Primary Amines by using a Cobalt Phosphine Catalyst
Adam, Rosa,Bheeter, Charles Beromeo,Cabrero-Antonino, Jose R.,Junge, Kathrin,Jackstell, Ralf,Beller, Matthias
, p. 842 - 846 (2017/03/17)
A general procedure for the catalytic hydrogenation of nitriles to primary amines by using a non-noble metal-based system is presented. Co(acac)3 in combination with tris[2-(dicyclohexylphosphino)ethyl]phosphine efficiently catalyzes the selective hydrogenation of a wide range of (hetero)aromatic and aliphatic nitriles to give the corresponding amines.
NNP-Type Pincer Imidazolylphosphine Ruthenium Complexes: Efficient Base-Free Hydrogenation of Aromatic and Aliphatic Nitriles under Mild Conditions
Adam, Rosa,Alberico, Elisabetta,Baumann, Wolfgang,Drexler, Hans-Joachim,Jackstell, Ralf,Junge, Henrik,Beller, Matthias
, p. 4991 - 5002 (2016/04/05)
A series of seven novel NImNHP-type pincer imidazolylphosphine ruthenium complexes has been synthesized and fully characterized. The use of hydrogenation of benzonitrile as a benchmark test identified [RuHCl(CO)(NImNHPtBu)] as the most active catalyst. With its stable Ru-BH4 analogue, in which chloride is replaced by BH4, a broad range of (hetero)aromatic and aliphatic nitriles, including industrially interesting adiponitrile, has been hydrogenated under mild and base-free conditions.
Stable and Inert Cobalt Catalysts for Highly Selective and Practical Hydrogenation of C≡N and C=O Bonds
Chen, Feng,Topf, Christoph,Radnik, J?rg,Kreyenschulte, Carsten,Lund, Henrik,Schneider, Matthias,Surkus, Annette-Enrica,He, Lin,Junge, Kathrin,Beller, Matthias
supporting information, p. 8781 - 8788 (2016/08/02)
Novel heterogeneous cobalt-based catalysts have been prepared by pyrolysis of cobalt complexes with nitrogen ligands on different inorganic supports. The activity and selectivity of the resulting materials in the hydrogenation of nitriles and carbonyl compounds is strongly influenced by the modification of the support and the nitrogen-containing ligand. The optimal catalyst system ([Co(OAc)2/Phenα-Al2O3]-800 = Cat. E) allows for efficient reduction of both aromatic and aliphatic nitriles including industrially relevant dinitriles to primary amines under mild conditions. The generality and practicability of this system is further demonstrated in the hydrogenation of diverse aliphatic, aromatic, and heterocyclic ketones as well as aldehydes, which are readily reduced to the corresponding alcohols.