49795-06-4Relevant articles and documents
Solvent-free basic or KF/alumina-assisted dehydrogenation of hydrazo compounds
Mihara, Masatoshi,Nakai, Takeo,Iwai, Toshiyuki,Ito, Takatoshi,Mizuno, Takumi
, p. 2124 - 2126 (2007)
A reduction of organic solvents in the organic chemical industry is of serious importance for sustainable chemistry. With this viewpoint, we successfully established the useful dehydrogenation of hydrazo compounds using basic alumina or KF/alumina under s
Electrosynthesis of Azobenzenes Directly from Nitrobenzenes
Ma, Yanfeng,Wu, Shanghui,Jiang, Shuxin,Xiao, Fuhong,Deng, Guo-Jun
, p. 3334 - 3338 (2021/10/29)
The electrochemical reduction strategy of nitrobenzenes is developed. The chemistry occurs under ambient conditions. The protocol uses inert electrodes and the solvent, DMSO, plays a dual role as a reducing agent. Its synthetic value has been demonstrated by the highly efficient synthesis of symmetric, unsymmetric and cyclic azo compounds.
Convergent Paired Electrochemical Synthesis of Azoxy and Azo Compounds: An Insight into the Reaction Mechanism
Sadatnabi, Ali,Mohamadighader, Niloofar,Nematollahi, Davood
supporting information, p. 6488 - 6493 (2021/08/23)
A convergent paired electrochemical method was developed for the synthesis of azoxy and azo compounds starting from the corresponding nitroarenes. We propose a unique mechanism for electrosynthesis of azoxy and azo compounds. We find that both anodic and cathodic reactions are responsible for the synthesis of these compounds. The synthesis of azoxy and azo derivatives have been successfully performed in an undivided cell, using carbon rod electrodes, by constant current electrolysis at room temperature.
Heterocoupling of Different Aryl Nitrenes to Produce Asymmetric Azoarenes Using Iron-Alkoxide Catalysis and Investigation of the Cis-Trans Isomerism of Selected Bulky Asymmetric Azoarenes
Groysman, Stanislav,Kurup, Sudheer S.,Wannipurage, Duleeka
, p. 3637 - 3644 (2021/11/12)
Heterocoupling of different aryl nitrenes (originating in organoazides) to produce asymmetric azoarenes using two different iron-alkoxide catalysts is reported. Fe(OCtBu2(3,5-Ph2C6H3))2(THF)2 was previously shown to catalyze the homocoupling of a variety of aryl nitrenes. While bulky nitrenes featuring ortho substituents were coupled more efficiently, coupling of the less bulky meta- and para-substituted aryl nitrenes was also demonstrated. In contrast, the iron(II) complex of a chelating bis(alkoxide) ligand, Fe[OO]Ph(THF)2, was previously shown to efficiently couple nonbulky aryl nitrenes lacking substituents in ortho positions. In the present work, we demonstrate that the combination of two different nitrenes (10 equiv overall, 5 equiv each) with Fe(OCtBu2(3,5-Ph2C6H3))2(THF)2 (10 mol %) produced a statistical or close to statistical distribution (25:25:50 for the two homocoupled products and the heterocoupled product, respectively) for various combinations containing one or two ortho alkyl substituents at one nitrene and a single ortho alkyl group at another. Surprisingly, the combination of Fe[OO]Ph(THF)2 with two different nonbulky organoazides was found to primarily catalyze the homocoupling of the resulting aryl nitrenes (21-49%), with a smaller proportion (~8-15%) of asymmetric product formation. Six different heterocoupled products featuring one or two alkyl groups in the ortho positions were isolated as a mixture of cis and trans isomers at room temperature and characterized by NMR spectroscopy, UV-vis spectroscopy, and high-resolution mass spectrometry. Following their isolation, cis-trans isomerism in these species was investigated. Heating the cis-trans mixture to 60 °C produced the trans isomer cleanly, while shining UV light on the cis-trans mixture significantly increased the amount of the cis isomer (up to 90%). The cis isomer was found to be relatively stable, exhibiting t1/2 values of approximately 10 days at room temperature.
Azo synthesis meets molecular iodine catalysis
Rowshanpour, Rozhin,Dudding, Travis
, p. 7251 - 7256 (2021/02/26)
A metal-free synthetic protocol for azo compound formation by the direct oxidation of hydrazine HN-NH bonds to azo group functionality catalyzed by molecular iodine is disclosed. The strengths of this reactivity include rapid reaction times, low catalyst loadings, use of ambient dioxygen as a stoichiometric oxidant, and ease of experimental set-up and azo product isolation. Mechanistic studies and density functional theory computations offering insight into this reactivity, as well as the events leading to azo group formation are presented. Collectively, this study expands the potential of main-group element iodine as an inexpensive catalyst, while delivering a useful transformation for forming azo compounds.
Chemoselective electrochemical reduction of nitroarenes with gaseous ammonia
Chang, Liu,Li, Jin,Wu, Na,Cheng, Xu
supporting information, p. 2468 - 2472 (2021/04/02)
Valuable aromatic nitrogen compounds can be synthesized by reduction of nitroarenes. Herein, we report electrochemical reduction of nitroarenes by a protocol that uses inert graphite felt as electrodes and ammonia as a reductant. Depending on the cell voltage and the solvent, the protocol can be used to obtain aromatic azoxy, azo, and hydrazo compounds, as well as aniline derivatives with high chemoselectivities. The protocol can be readily scaled up to >10 g with no decrease in yield, demonstrating its potential synthetic utility. A stepwise cathodic reduction pathway was proposed to account for the generations of products in turn.
Trichloroisocyanuric Acid Mediated Oxidative Dehydrogenation of Hydrazines: A Practical Chemical Oxidation to Access Azo Compounds
Cao, Guiyan,Hu, Yulai,Huang, Danfeng,Huo, Congde,Liu, Xuan,Su, Yingpeng,Wang, Ke-Hu,Yu, Jie,Zhang, Rong,Zhao, Yanan
supporting information, p. 1103 - 1112 (2020/04/01)
A highly efficient, metal-free, chemical oxidation of hydrazines has been implemented using environmentally friendly TCCA as oxidant. This benign protocol provides straightforward access to a wide range of azo compounds in THF in excellent yield. Altogether, 35 azo compounds were obtained in this way and scale-up preparations were performed. Additionally, a plausible mechanism was also proposed. Step-economical process, mild reaction conditions, operational simplicity, high reaction efficiency, and easy scale-up highlight the practicality of this methodology.
Synthesis of novel 1,2-diarylpyrazolidin-3-one–based compounds and their evaluation as broad spectrum antibacterial agents
Abadi, Ashraf H.,Abdel-Halim, Mohammad,El-Sharkawy, Lina Y.,Engel, Matthias,Fathalla, Reem K.,Mokbel, Salma A.
, (2020/03/30)
There is a continuous need to develop new antibacterial agents with non-traditional mechanisms to combat the nonstop emerging resistance to most of the antibiotics used in clinical settings. We identified novel pyrazolidinone derivatives as antibacterial hits in an in-house library screening and synthesized several derivatives in order to improve the potency and increase the polarity of the discovered hit compounds. The oxime derivative 24 exhibited promising antibacterial activity against E. coli TolC, B. subtilis and S. aureus with MIC values of 4, 10 and 20 μg/mL, respectively. The new lead compound 24 was found to exhibit a weak dual inhibitory activity against both the E. coli MurA and MurB enzymes with IC50 values of 88.1 and 79.5 μM, respectively, which could partially explain its antibacterial effect. A comparison with the previously reported, structurally related pyrazolidinediones suggested that the oxime functionality at position 4 enhanced the activity against MurA and recovered the activity against the MurB enzyme. Compound 24 can serve as a lead for further development of novel and safe antibiotics with potential broad spectrum activity.
Conversion of anilines into azobenzenes in acetic acid with perborate and Mo(VI): correlation of reactivities
Karunakaran,Venkataramanan
, p. 375 - 385 (2019/02/14)
Azobenzenes are extensively used to dye textiles and leather and by tuning the substituent in the ring, vivid colours are obtained. Here, we report preparation of a large number of azobenzenes in good yield from commercially available anilines using sodium perborate (SPB) and catalytic amount of Na2MoO4 under mild conditions. Glacial acetic acid is the solvent of choice and the aniline to azobenzene conversion is zero, first and first orders with respect to SPB, Na2MoO4 and aniline, respectively. Based on the kinetic orders, UV–visible spectra and cyclic voltammograms, the conversion mechanism has been suggested. The reaction rates of about 50 anilines at 20–50?°C and their energy and entropy of activation conform to the isokinetic or Exner relationship and compensation effect, respectively. However, the reaction rates, deduced by the so far adopted method, fail to comply with the Hammett correlation. The specific reaction rates of molecular anilines, obtained through a modified calculation, conform to the Hammett relationship. Thus, this work presents a convenient inexpensive non-hazardous method of preparation of a larger number of azobenzenes, and shows the requirement of modification in obtaining the true reaction rates of anilines in acetic acid and the validity of Hammett relationship in the conversion process, indicating operation of a common mechanism.
Rhodium-Catalyzed Reaction of Azobenzenes and Nitrosoarenes toward Phenazines
Xiao, Yan,Wu, Xiaopeng,Wang, Hepan,Sun, Song,Yu, Jin-Tao,Cheng, Jiang
supporting information, p. 2565 - 2568 (2019/04/30)
A rhodium-catalyzed annulative reaction between azobenzenes and nitrosoarenes has been developed, leading to a series of phenazines in moderate to good yields. This procedure proceeds with sequential chelation-assisted addition of aryl C-H to nitrosoarenes and ring closure by electrophilic attack of azo group to aryl. During this transformation, the azo group served as not only a traceless directing group but also a building block in the final products.