611-68-7Relevant articles and documents
Intramolecular Diels-Alder reactions of brominated masked o-benzoquinones. A detour method to synthesize highly functionalized oxatricyclic [m.3.1.0] ring systems from 2-methoxyphenols
Lin, Ken-Ching,Shen, Yi-Ling,Rao, N. S. Kameswara,Liao, Chun-Chen
, p. 8157 - 8165 (2002)
Intramolecular Diels-Alder (IMDA) reactions of masked o-benzoquinones (MOBs) 5a-d to 7a-d and 17a-d to 19a-d generated in situ from 2-methoxyphenols 2-4 and 14-16, respectively, in the presence of alkenols 1a-d, resulting in highly functionalized oxatricyclic [m.3.1.0] ring systems are described. The MOBs 5a-d to 7a-d underwent the IMDA reactions to furnish the adducts 8a-d, 10a-d, and 12a-d (direct method) in poor yields with the concomitant formation of considerable amounts of unexpected byproducts 9a-d, 11a-d, and 13a-d, respectively. To avoid the formation of byproducts and to improve the yields of the desired cycloadducts, a detour method comprising sequential bromination of 2-methoxyphenols 2-4, tandem oxidative acetalization-Diels-Alder reaction, and debromination has been developed. The oxidation of bromophenols 14-16 in the presence of alkenols 1a-d produced the corresponding MOBs 17a-d to 19a-d, which underwent cycloaddition to afford the cycloadducts 20a-d to 22a-d, respectively, as sole products in good to high yields in a highly regio- and stereoselective manner. Treatment of the bromoadducts 20a-d to 22a-d with tributylammonium formate-palladium reagent produced the corresponding debrominated products 8a-d, 10a-d, and 12a-d in high to excellent yields. In general, the latter oxatricycles were obtained in higher overall yields via the detour method than those via the direct method.
Polyoxometalate-based supramolecular porous frameworks with dual-active centers towards highly efficient synthesis of functionalized: P -benzoquinones
An, Haiyan,Chang, Shenzhen,Chen, Yanhong,Huang, Yaohui,Luo, Huiyun,Zhu, Qingshan
, p. 8591 - 8603 (2021/11/17)
Selective oxidation of substituted phenols is an ideal method for preparing functionalized p-benzoquinones (p-BQs), which serve as versatile raw materials for the synthesis of a variety of biologically active compounds. Herein, two new polyoxometalate-based supramolecular porous frameworks, K3(H2O)4[Cu(tza)2(H2O)]2[Cu(Htza)2(H2O)2][BW12O40]·6H2O (1) and H3K3(H2O)3[Cu(Htza)2(H2O)]3[SiW12O44]·14H2O (2) (Htza = tetrazol-1-ylacetic acid), were synthesized and structurally characterized by elemental analysis, infrared spectroscopy, thermal analysis, UV-vis diffuse reflectance spectroscopy, and single-crystal X-ray and powder diffraction. The single-crystal X-ray diffraction analysis indicates that both compounds possess unique petal-like twelve-nucleated Cu-organic units composed of triangular and hexagonal metal-organic loops. In 1, the Cu-organic units are isolated and [BW12O40]5- polyoxoanions are sandwiched between staggered adjacent triangular channels in the structure. However in 2, the Cu-organic units extend into a two-dimensional layered structure, and the [SiW12O44]12- polyoxoanions occupy the larger hexagonal channels in the stacked structure. Both compounds as heterogeneous catalysts can catalyze the selective oxidation of substituted phenols to high value-added p-BQs under mild conditions (60 °C) with TBHP as the oxidant, particularly in the oxidation of 2,3,6-trimethylphenol to 2,3,5-trimethyl-p-benzoquinone (TMBQ, key intermediate in vitamin E production). Within 8-10 min, the yield of TMBQ is close to 100%, and oxidant utilization efficiency is up to 94.2% for 1 and 90.9% for 2. The turnover frequencies of 1 and 2 are as high as 5000 and 4000 h-1, respectively. No obvious decrease in the yield of TMBQ was observed after five cycles, which indicates the excellent sustainability of both compounds. Our study of the catalytic mechanism suggests that there is a two-site synergetic effect: (i) the copper ion acts as the catalytic site of the homolytic radical pathway; and (ii) the polyoxoanion acts as the active center of the heterolytic oxygen atom transfer pathway. This journal is
PHOTOOXIDATION OF PHENOLIC COMPOUNDS
-
Page/Page column 17-18, (2021/11/26)
The present invention relates to the photooxidation of phenolic compounds to the respective quinoid compounds using methylene blue as photosensitizer in a solvent mixture of water and alcohols using light of the high wavelength range of the visible spectrum.
Organophotocatalytic Aerobic Oxygenation of Phenols in a Visible-Light Continuous-Flow Photoreactor
Wellauer, Jo?l,Miladinov, Dragan,Buchholz, Thomas,Schütz, Jan,Stemmler, René T.,Medlock, Jonathan A.,Bonrath, Werner,Sparr, Christof
supporting information, p. 9748 - 9752 (2021/05/27)
A mild photocatalytic phenol oxygenation enabled by a continuous-flow photoreactor using visible light and pressurized air is described herein. Products for wide-ranging applications, including the synthesis of vitamins, were obtained in high yields by precisely controlling principal process parameters. The reactor design permits low organophotocatalyst loadings to generate singlet oxygen. It is anticipated that the efficient aerobic phenol oxygenation to benzoquinones and p-quinols contributes to sustainable synthesis.
Regiodivergent oxidation of alkoxyarenes by hypervalent iodine/oxone system
China, Hideyasu,Tanihara, Kokoro,Sasa, Hirotaka,Kikushima, Kotaro,Dohi, Toshifumi
, p. 2 - 8 (2019/09/10)
We have found that the combination of Oxone with an organoiodine compound, i.e., 2-iodobenzoic acid (2-IB), selectively yields p-quinones from monomethoxyarenes under mild conditions. In this reaction system, an organoiodine compound is immediately oxidized by Oxone to generate cyclic hypervalent iodine (III) species in situ, which serves as the specific mediator for the selective p-quinone synthesis, preventing o-quinone formation.
En Route to D-Ring Inverted Phorbol Esters
Chow, Sharon,Krainz, Tanja,Bernhardt, Paul V.,Williams, Craig M.
, p. 8761 - 8764 (2019/11/03)
Phorbol esters are long regarded as tumor promotors, due to protein kinase C (PKC) activation, but more recently higher oxidized natural derivatives have been shown to display antitumor activity. Given the synthetic difficulty, systematic non-natural syst
A Catalytic Oxidative Quinone Heterofunctionalization Method: Synthesis of Strongylophorine-26
Yu, Wanwan,Hjerrild, Per,Jacobsen, Kristian M.,Tobiesen, Henriette N.,Clemmensen, Line,Poulsen, Thomas B.
supporting information, p. 9805 - 9809 (2018/07/31)
The preparation of heteroatom-substituted p-quinones is ideally performed by direct addition of a nucleophile followed by in situ reoxidation. Albeit an appealing strategy, the reactivity of the p-quinone moiety is not easily tamed and no broadly applicable method for heteroatom functionalization exists. Shown herein is that Co(OAc)2 and Mn(OAc)3?2 H2O act as powerful catalysts for oxidative p-quinone functionalization with a collection of O, N, and S nucleophiles, using oxygen as the terminal oxidant. Preliminary mechanistic observations and the first synthesis of the cytotoxic natural product strongylophorine-26 is presented.
Synthesis of coenzyme Q0 through divanadium-catalyzed oxidation of 3,4,5-trimethoxytoluene with hydrogen peroxide
Zalomaeva, Olga V.,Evtushok, Vasilii Yu.,Maksimov, Gennadii M.,Maksimovskaya, Raisa I.,Kholdeeva, Oxana A.
, p. 5202 - 5209 (2017/04/27)
The selective oxidation of methoxy/methyl-substituted arenes to the corresponding benzoquinones has been first realized using aqueous hydrogen peroxide as a green oxidant, acid tetrabutylammonium salts of the γ-Keggin divanadium-substituted phosphotungstate [γ-PW10O38V2(μ-O)2]5- (I) as a catalyst, and MeCN as a solvent. The presence of the dioxovanadium core in the catalyst is crucial for the catalytic performance. The reaction requires an acid co-catalyst or, alternatively, a highly protonated form of I can be prepared and employed. The industrially relevant oxidation of 3,4,5-trimethoxytoluene gives 2,3-dimethoxy-5-methyl-1,4-benzoquinone (ubiquinone 0 or coenzyme Q0, the key intermediate for coenzyme Q10 and other essential biologically active compounds) with 73% selectivity at 76% arene conversion. The catalyst retains its structure under turnover conditions and can be easily recycled and reused without significant loss of activity and selectivity.
Ethynylbenzenoid metabolites of Antrodia camphorata: Synthesis and inhibition of TNF expression
Buccini, Marco,Punch, Kathryn A.,Kaskow, Belinda,Flematti, Gavin R.,Skelton, Brian W.,Abraham, Lawrence J.,Piggott, Matthew J.
, p. 1100 - 1113 (2014/02/14)
An improved synthesis of the anti-inflammatory natural product antrocamphin A (2), involving a key Castro-Stephens reaction, is presented, along with the first total synthesis of its congener antrocamphin B (3). Approaches towards the more complex co-meta
First total synthesis of antrocamphin A and its analogs as anti-inflammatory and anti-platelet aggregation agents
Lee, Chia-Lin,Huang, Chi-Huan,Wang, Hui-Chun,Chuang, Da-Wei,Wu, Ming-Jung,Wang, Sheng-Yang,Hwang, Tsong-Long,Wu, Chin-Chung,Chen, Yeh-Long,Chang, Fang-Rong,Wu, Yang-Chang
supporting information; experimental part, p. 70 - 73 (2011/02/23)
Naturally occurring antrocamphin A (1) is a potent anti-inflammatory compound from the edible fungus Antrodia camphorata (Taiwanofungus camphoratus), whose wild fruiting body is used as a valuable folk medicine in Taiwan. This study is the first total syn