628-02-4Relevant articles and documents
Conversion of Aliphatic Amides into Amines with benzene. 2. Kinetics and Mechanism
Boutin, Raymond H.,Loudon, G. Marc
, p. 4277 - 4284 (1984)
The reagent benzene (PIFA), used to prepare amines from amides as described in the preceding paper, dissolves in 50:50 (v/v) aqueous acetonitrile to give an acidic solution.This behavior can be explained quantitatively by the dimerization of PIFA in solution under preparatively significant conditions; the dimer, μ-oxo-I,I'-bis(trifluoroacetato-O)-I,I'-diphenyldiiodine(III), 2, can be isolated from the reaction mixture above pH 3.The rate of hexanamide rearrangement by PIFA was studied as a function of PIFA concentration and shown to display asymtotic behavior.The rate is depressed by added trifluoroacetate and accelerated by increasing pH, but not in a simple way.These observations can be accounted for by a mechanism (eq 13-15) in which the dimer 2 complexes with the amide, releasing acid.It is this released acid that accounts for most of the kinetically significant observations.The rearrangement of the amide-dimer complex is the rate-limiting step.Other kinetically indistinguishable mechanism are also possible.The rate of rearrangement promoted by dimer alone is in agreement with that predicted by the proposed mechanism.The imidic acid (enol) form of the amide is considered as a possible kinetically active form of the amide but is rejected on kinetic grounds.
A New, One-Pot Synthesis of Primary 2-Alkynamides
Page, Philip C. Bulman,Rosenthal, Stephen,Williams, Richard Vaughan
, p. 621 - 623 (1988)
Chlorosulphonyl isocyanate (CSI) reacts with 1-trimethylsilyl acetylenes to give primary 2-alkynamides in good yields after hydrolytic work-up.
Deoxygenative hydroboration of primary, secondary, and tertiary amides: Catalyst-free synthesis of various substituted amines
An, Duk Keun,Jaladi, Ashok Kumar,Kim, Hyun Tae,Yi, Jaeeun
supporting information, (2021/11/17)
Transformation of relatively less reactive functional groups under catalyst-free conditions is an interesting aspect and requires a typical protocol. Herein, we report the synthesis of various primary, secondary, and tertiary amines through hydroboration of amides using pinacolborane under catalyst-free and solvent-free conditions. The deoxygenative hydroboration of primary and secondary amides proceeded with excellent conversions. The comparatively less reactive tertiary amides were also converted to the corresponding N,N-diamines in moderate yields under catalyst-free conditions, although alcohols were obtained as a minor product.
Hydration of Aliphatic Nitriles Catalyzed by an Osmium Polyhydride: Evidence for an Alternative Mechanism
Babón, Juan C.,Esteruelas, Miguel A.,López, Ana M.,O?ate, Enrique
, p. 7284 - 7296 (2021/05/29)
The hexahydride OsH6(PiPr3)2 competently catalyzes the hydration of aliphatic nitriles to amides. The main metal species under the catalytic conditions are the trihydride osmium(IV) amidate derivatives OsH3{κ2-N,O-[HNC(O)R]}(PiPr3)2, which have been isolated and fully characterized for R = iPr and tBu. The rate of hydration is proportional to the concentrations of the catalyst precursor, nitrile, and water. When these experimental findings and density functional theory calculations are combined, the mechanism of catalysis has been established. Complexes OsH3{κ2-N,O-[HNC(O)R]}(PiPr3)2 dissociate the carbonyl group of the chelate to afford κ1-N-amidate derivatives, which coordinate the nitrile. The subsequent attack of an external water molecule to both the C(sp) atom of the nitrile and the N atom of the amidate affords the amide and regenerates the κ1-N-amidate catalysts. The attack is concerted and takes place through a cyclic six-membered transition state, which involves Cnitrile···O-H···Namidate interactions. Before the attack, the free carbonyl group of the κ1-N-amidate ligand fixes the water molecule in the vicinity of the C(sp) atom of the nitrile.
Efficient heterogeneous hydroaminocarbonylation of olefins with ammonium chloride as amino source
Sun, Zhao,Yan, Li,Ji, Guangjun,Wang, Guoqing,Ma, Lei,Jiang, Miao,Li, Cunyao,Ding, Yunjie
, (2021/02/26)
An efficient protocol for heterogeneous hydroaminocarbonylation of olefins with ammonium chloride without addition of acid additive has been developed for the first time. We successfully synthesized the Pd@POPs-PPh3 catalyst through a solvothermal synthetic method. Under this heterogeneous catalytic system, C2-C6 olefins displayed good yields and TON, and a yield of 66% of propionamide and TON = 1400 were obtained under mild reaction conditions (403 K, Pethylene = 0.5 MPa, PCO = 2.5 MPa), which is a little higher than those in the homogeneous system. This catalytic system has the advantage of easy separation of product and catalyst, as well as good stability. Uniform dispersion of Pd active sites, strong coordination bond between P and Pd, high surface area, large pore volume and hierarchical porosity of Pd@POPs-PPh3 were confirmed by a series of characterizations, which is believed to be the keys for the good activity and stability of hydroaminocarbonylation reaction.
Amine-boranes as Dual-Purpose Reagents for Direct Amidation of Carboxylic Acids
Choudhary, Shivani,Hamann, Henry J.,Ramachandran, P. Veeraraghavan
supporting information, (2020/11/13)
Amine-boranes serve as dual-purpose reagents for direct amidation, activating aliphatic and aromatic carboxylic acids and, subsequently, delivering amines to provide the corresponding amides in up to 99% yields. Delivery of gaseous or low-boiling amines as their borane complexes provides a major advantage over existing methodologies. Utilizing amine-boranes containing borane incompatible functionalities allows for the preparation of functionalized amides. An intermolecular mechanism proceeding through a triacyloxyborane-amine complex is proposed.
Direct synthesis of amides from nonactivated carboxylic acids using urea as nitrogen source and Mg(NO3)2or imidazole as catalysts
Blacker, A. John,Chhatwal, A. Rosie,Lomax, Helen V.,Marcé, Patricia,Williams, Jonathan M. J.
, p. 5808 - 5818 (2020/06/21)
A new method for the direct synthesis of primary and secondary amides from carboxylic acids is described using Mg(NO3)2·6H2O or imidazole as a low-cost and readily available catalyst, and urea as a stable, and easy to manipulate nitrogen source. This methodology is particularly useful for the direct synthesis of primary and methyl amides avoiding the use of ammonia and methylamine gas which can be tedious to manipulate. Furthermore, the transformation does not require the employment of coupling or activating agents which are commonly required.
Arene-ruthenium(II)-phosphine complexes: Green catalysts for hydration of nitriles under mild conditions
Vyas, Komal M.,Mandal, Poulami,Singh, Rinky,Mobin, Shaikh M.,Mukhopadhyay, Suman
, (2019/12/11)
Three new arene-ruthenium(II) complexes were prepared by treating [{RuCl(μ-Cl)(η6-arene)}2] (η6-arene = p-cymene) dimer with tri(2-furyl)phosphine (PFu3) and 1,3,5-triaza-7-phosphaadamantane (PTA), respectively to obtain [RuCl2(η6-arene)PFu3] [Ru]-1, [RuCl(η6-arene)(PFu3)(PTA)]BF4 [Ru]-2 and [RuCl(η6-arene)(PFu3)2]BF4 [Ru]-3. All the complexes were structurally identified using analytical and spectroscopic methods including single-crystal X-ray studies. The effectiveness of resulting complexes as potential homogeneous catalysts for selective hydration of different nitriles into corresponding amides in aqueous medium and air atmosphere was explored. There was a remarkable difference in catalytic activity of the catalysts depending on the nature and number of phosphorus-donor ligands and sites available for catalysis. Experimental studies performed using structural analogues of efficient catalyst concluded a structural-activity relationship for the higher catalytic activity of [Ru]-1, being able to convert huge variety of aromatic, heteroaromatic and aliphatic nitriles. The use of eco-friendly water as a solvent, open atmosphere and avoidance of any organic solvent during the catalytic reactions prove the reported process to be truly green and sustainable.
One-pot reductive amination of carboxylic acids: a sustainable method for primary amine synthesis
Coeck, Robin,De Vos, Dirk E.
supporting information, p. 5105 - 5114 (2020/08/25)
The reductive amination of carboxylic acids is a very green, efficient and sustainable method for the production of (bio-based) amines. However, with current technology, this reaction requires two to three reaction steps. Here, we report the first (heterogeneous) catalytic system for the one-pot reductive amination of carboxylic acids to amines, with solely H2 and NH3 as the reactants. This reaction can be performed with relatively cheap ruthenium-tungsten bimetallic catalysts in the green and benign solvent cyclopentyl methyl ether (CPME). Selectivities of up to 99% for the primary amine could be achieved at high conversions. Additionally, the catalyst is recyclable and tolerant for common impurities such as water and cations (e.g. sodium carboxylate).
Selective Transformations of Triglycerides into Fatty Amines, Amides, and Nitriles by using Heterogeneous Catalysis
Jamil, Md. A. R.,Siddiki, S. M. A. Hakim,Touchy, Abeda Sultana,Rashed, Md. Nurnobi,Poly, Sharmin Sultana,Jing, Yuan,Ting, Kah Wei,Toyao, Takashi,Maeno, Zen,Shimizu, Ken-ichi
, p. 3115 - 3125 (2019/04/26)
The use of triglycerides as an important class of biomass is an effective strategy to realize a more sustainable society. Herein, three heterogeneous catalytic methods are reported for the selective one-pot transformation of triglycerides into value-added chemicals: i) the reductive amination of triglycerides into fatty amines with aqueous NH3 under H2 promoted by ZrO2-supported Pt clusters; ii) the amidation of triglycerides under gaseous NH3 catalyzed by high-silica H-beta (Hβ) zeolite at 180 °C; iii) the Hβ-promoted synthesis of nitriles from triglycerides and gaseous NH3 at 220 °C. These methods are widely applicable to the transformation of various triglycerides (C4–C18 skeletons) into the corresponding amines, amides, and nitriles.