823-76-7Relevant articles and documents
N-H and C-H Bond Activations of an Isoindoline Promoted by Iridium- And Osmium-Polyhydride Complexes: A Noninnocent Bridge Ligand for Acceptorless and Base-Free Dehydrogenation of Secondary Alcohols
Buil, María L.,Esteruelas, Miguel A.,Izquierdo, Susana,Nicasio, Antonio I.,O?ate, Enrique
, p. 2719 - 2731 (2020)
The elusive C-H bond activation of an organic fragment contained in many biologically active molecules and the use of the resulting noninnocent ligand in bimetallic catalysis applied to the acceptorless and base-free dehydrogenation of secondary alcohols has been performed by using the polyhydrides IrH5(PiPr3)2 (1) and OsH6(PiPr3)2 (2). Complex 1 activates the N-H bond of 1,3-bis(6′-methylpyridyl-2′-imino)isoindoline (HBMePHI) to give the mononuclear complex IrH2{κ2-Npy,Nimine(BMePHI)}(PiPr3)2 (3). Both 1 and 2 activate the C(sp2)-H bond at position 4 of the core isoindoline of the BMePHI ligand of 3. The reactions lead to the homobinuclear complex (PiPr3)2H2Ir{μ-(κ2-Npy,Nimine-BMePI-κ2-Nimine,C4iso)}IrH2(PiPr3)2 (4) and the heterobinuclear compound (PiPr3)2H2Ir{μ-(κ2-Npy,Nimine-BMePI-κ2-Nimine,C4iso)}OsH3(PiPr3)2 (5), respectively. The metalated carbon atom of 4 and 5 has a marked nucleophilic character. Thus, it adds the proton of alcohols to afford the respective cations [(PiPr3)2H2Ir{μ-(κ2-Npy,Nimine-BMePHI-κ2-Npy,Nimine)}IrH2(PiPr3)2]+ (6) and [(PiPr3)2H2Ir{μ-(κ2-Npy,Nimine-BMePHI-κ2-Npy,Nimine)}OsH3(PiPr3)2]+ (7), and the corresponding alkoxide. The mononuclear complex 3 and the binuclear compounds 4 and 5 are efficient catalysts for the acceptorless and base-free dehydrogenation of secondary alcohols. The binuclear complexes 4 and 5 are significantly more active than 3. The catalytic synergism is a consequence of the mutual electronic influence of the metals through the bridge. X-ray diffraction analysis data of the structures of 3-5 and the reactivity of 4 and 5 support a noninnocent character of the bridging ligand.
The solvent determines the product in the hydrogenation of aromatic ketones using unligated RhCl3as catalyst precursor
Bartling, Stephan,Chakrabortty, Soumyadeep,De Vries, Johannes G.,Kamer, Paul C. J.,Lund, Henrik,Müller, Bernd H.,Rockstroh, Nils
, p. 7608 - 7616 (2021/12/13)
Alkyl cyclohexanes were synthesized in high selectivity via a combined hydrogenation/hydrodeoxygenation of aromatic ketones using ligand-free RhCl3 as pre-catalyst in trifluoroethanol as solvent. The true catalyst consists of rhodium nanoparticles (Rh NPs), generated in situ during the reaction. A range of conjugated as well as non-conjugated aromatic ketones were directly hydrodeoxygenated to the corresponding saturated cyclohexane derivatives at relatively mild conditions. The solvent was found to be the determining factor to switch the selectivity of the ketone hydrogenation. Cyclohexyl alkyl-alcohols were the products using water as a solvent.
RhNPs supported onN-functionalized mesoporous silica: effect on catalyst stabilization and catalytic activity
Pulido-Díaz, Israel T.,Serrano-Maldonado, Alejandro,López-Suárez, Carlos César,Méndez-Ocampo, Pedro A.,Portales-Martínez, Benjamín,Gutiérrez-Alejandre, Aída,Salas-Martin, Karla P.,Guerrero-Ríos, Itzel
, p. 3289 - 3298 (2021/03/16)
Amine and nicotinamide groups grafted on ordered mesoporous silica (OMS) were investigated as stabilizers for RhNPs used as catalysts in the hydrogenation of several substrates, including carbonyl and aryl groups. Supported RhNPs on functionalized OMS were prepared by controlled decomposition of an organometallic precursor of rhodium under dihydrogen pressure. The resulting materials were characterized thoroughly by spectroscopic and physical techniques (FTIR, TGA, BET, SEM, TEM, EDX, XPS) to confirm the formation of spherical rhodium nanoparticles with a narrow size distribution supported on the silica surface. The use of nicotinamide functionalized OMS as a support afforded small RhNPs (2.3 ± 0.3 nm), and their size and shape were maintained after the catalyzed acetophenone hydrogenation. In contrast, amine-functionalized OMS formed RhNP aggregates after the catalytic reaction. The supported RhNPs could selectively reduce alkenyl, carbonyl, aryl and heteroaryl groups and were active in the reductive amination of phenol and morpholine, using a low concentration of the precious metal (0.07-0.18 mol%).
A robust and stereocomplementary panel of ene-reductase variants for gram-scale asymmetric hydrogenation
Nett, Nathalie,Duewel, Sabine,Schmermund, Luca,Benary, Gerrit E.,Ranaghan, Kara,Mulholland, Adrian,Opperman, Diederik J.,Hoebenreich, Sabrina
, (2021/01/25)
We report an engineered panel of ene-reductases (ERs) from Thermus scotoductus SA-01 (TsER) that combines control over facial selectivity in the reduction of electron deficient C[dbnd]C double bonds with thermostability (up to 70 °C), organic solvent tolerance (up to 40 % v/v) and a broad substrate scope (23 compounds, three new to literature). Substrate acceptance and facial selectivity of 3-methylcyclohexenone was rationalized by crystallisation of TsER C25D/I67T and in silico docking. The TsER variant panel shows excellent enantiomeric excess (ee) and yields during bi-phasic preparative scale synthesis, with isolated yield of up to 93 % for 2R,5S-dihydrocarvone (3.6 g). Turnover frequencies (TOF) of approximately 40 000 h?1 were achieved, which are comparable to rates in hetero- and homogeneous metal catalysed hydrogenations. Preliminary batch reactions also demonstrated the reusability of the reaction system by consecutively removing the organic phase (n-pentane) for product removal and replacing with fresh substrate. Four consecutive batches yielded ca. 27 g L?1 R-levodione from a 45 mL aqueous reaction, containing less than 17 mg (10 μM) enzyme and the reaction only stopping because of acidification. The TsER variant panel provides a robust, highly active and stereocomplementary base for further exploitation as a tool in preparative organic synthesis.
Direct Synthesis of α-Amino Nitriles from Sulfonamides via Base-Mediated C-H Cyanation
Shi, Shasha,Yang, Xianyu,Tang, Man,Hu, Jiefeng,Loh, Teck-Peng
supporting information, p. 4018 - 4022 (2021/05/26)
Herein, we disclose a transition-metal-free reaction system that enables α-cyanation of sulfonamides through C-H bond cleavage for the preparation of α-amino nitriles, including difficult-to-access all-alkyl α-tertiary scaffolds. More than 50 substrate examples prove a wide functional group tolerance. Additionally, its synthetic practicality is highlighted by gram-scalability and the late-stage modification of natural compounds. Mechanistic experiments suggest that this process involves in situ formation of an imine intermediate via base-promoted elimination of HF.
Preparation and Degradation of Rhodium and Iridium Diolefin Catalysts for the Acceptorless and Base-Free Dehydrogenation of Secondary Alcohols
Buil, Mariá L.,Collado, Alba,Esteruelas, Miguel A.,G? mez-Gallego, Mar,Izquierdo, Susana,Nicasio, Antonio I.,Onìate, Enrique,Sierra, Miguel A.
, p. 989 - 1003 (2021/05/04)
Rhodium and iridium diolefin catalysts for the acceptorless and base-free dehydrogenation of secondary alcohols have been prepared, and their degradation has been investigated, during the study of the reactivity of the dimers [M(μ-Cl)(I4-C8H12)]2 (M = Rh (1), Ir (2)) and [M(μ-OH)(I4-C8H12)]2 (M = Rh (3), Ir (4)) with 1,3-bis(6′-methyl-2′-pyridylimino)isoindoline (HBMePHI). Complex 1 reacts with HBMePHI, in dichloromethane, to afford equilibrium mixtures of 1, the mononuclear derivative RhCl(I4-C8H12){κ1-Npy-(HBMePHI)} (5), and the binuclear species [RhCl(I4-C8H12)]2{μ-Npy,Npy-(HBMePHI)} (6). Under the same conditions, complex 2 affords the iridium counterparts IrCl(I4-C8H12){κ1-Npy-(HBMePHI)} (7) and [IrCl(I4-C8H12)]2{μ-Npy,Npy-(HBMePHI)} (8). In contrast to chloride, one of the hydroxide groups of 3 and 4 promotes the deprotonation of HBMePHI to give [M(I4-C8H12)]2(μ-OH){μ-Npy,Niso-(BMePHI)} (M = Rh (9), Ir (10)), which are efficient precatalysts for the acceptorless and base-free dehydrogenation of secondary alcohols. In the presence of KOtBu, the [BMePHI]- ligand undergoes three different degradations: Alcoholysis of an exocyclic isoindoline-N double bond, alcoholysis of a pyridyl-N bond, and opening of the five-membered ring of the isoindoline core.
Aerobic oxidation and oxidative esterification of alcohols through cooperative catalysis under metal-free conditions
Karimi, Babak,Ghahremani, Mina,Vali, Hojatollah,Ciriminna, Rosaria,Pagliaro, Mario
supporting information, p. 8897 - 8900 (2021/09/10)
The ABNO@PMO-IL-Br material obtained by anchoring 9-azabicyclo[3.3.1]nonane-3-oneN-oxyl (keto-ABNO) within the mesopores of periodic mesoporous organosilica with bridged imidazolium groups is a robust bifunctional catalyst for the metal-free aerobic oxidation of numerous primary and secondary alcohols under oxygen balloon reaction conditions. The catalyst, furthermore, can be successfully employed in the first metal-free self-esterification of primary aliphatic alcohols affording valued esters.
METHOD FOR OXIDATIVE CLEAVAGE OF COMPOUNDS WITH UNSATURATED DOUBLE BOND
-
Paragraph 0053-0056, (2021/03/19)
A method for oxidative cleavage of a compound with an unsaturated double bond is provided. The method comprises the following step: (A) providing a compound (I) with an unsaturated double bond, a reagent with trifluoromethyl, and a catalyst; wherein the catalyst is represented by the following formula (II): M(O)mL1yL2z (II); wherein, M, L1, L2, m, y, z, R1, R2 and R3 are defined in the specification; and (B) mixing the compound with an unsaturated double bond and the reagent with a trifluoromethyl to perform an oxidation of the compound with the unsaturated double bond by using the catalyst at air or an oxygen condition to get a compound presented as formula (III):
Method for oxidative cracking of compound containing unsaturated double bonds
-
Paragraph 0108-0114; 0176-0178, (2021/07/09)
The invention relates to a method for oxidative cracking of a compound containing unsaturated double bonds. The method comprises the following steps: (A) providing a compound (I) containing unsaturated double bonds, a trifluoromethyl-containing reagent and a catalyst, wherein the catalyst is shown as a formula (II): M(O)mL1yL2z (II), M, L1, L2, m, y, z, R1, R2 and R3 being defined in the specification; and (B) mixing the compound containing the unsaturated double bonds and the trifluoromethyl-containing reagent, and performing an oxidative cracking reaction on the compound containing the unsaturated double bonds in the presence of air or oxygen by using the catalyst to obtain a compound represented by formula (III),.
METHOD FOR OXIDATIVE CLEAVAGE OF COMPOUNDS WITH UNSATURATED DOUBLE BOND
-
Paragraph 0071, (2021/07/10)
A method for oxidative cleavage of a compound with an unsaturated double bond is provided. The method includes the steps of: (A) providing a compound (I) with an unsaturated double bond, a trifluoromethyl-containing reagent, and a catalyst; wherein, the catalyst is represented by Formula (II): M(O)mL1yL2z??(II);wherein, M, L1, L2, m, y, z, R1, R2 and R3 are defined in the specification; and(B) mixing the compound with an unsaturated double bond and the trifluoromethyl-containing reagent to perform an oxidative cleavage of the compound with the unsaturated double bond by using the catalyst in air or under oxygen atmosphere condition to obtain a compound represented by Formula (III):